Metamath Proof Explorer


Theorem uniintab

Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of ph ( x ) . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion uniintab
|- ( E! x ph <-> U. { x | ph } = |^| { x | ph } )

Proof

Step Hyp Ref Expression
1 euabsn2
 |-  ( E! x ph <-> E. y { x | ph } = { y } )
2 uniintsn
 |-  ( U. { x | ph } = |^| { x | ph } <-> E. y { x | ph } = { y } )
3 1 2 bitr4i
 |-  ( E! x ph <-> U. { x | ph } = |^| { x | ph } )