Step |
Hyp |
Ref |
Expression |
1 |
|
vn0 |
|- _V =/= (/) |
2 |
|
inteq |
|- ( A = (/) -> |^| A = |^| (/) ) |
3 |
|
int0 |
|- |^| (/) = _V |
4 |
2 3
|
eqtrdi |
|- ( A = (/) -> |^| A = _V ) |
5 |
4
|
adantl |
|- ( ( U. A = |^| A /\ A = (/) ) -> |^| A = _V ) |
6 |
|
unieq |
|- ( A = (/) -> U. A = U. (/) ) |
7 |
|
uni0 |
|- U. (/) = (/) |
8 |
6 7
|
eqtrdi |
|- ( A = (/) -> U. A = (/) ) |
9 |
|
eqeq1 |
|- ( U. A = |^| A -> ( U. A = (/) <-> |^| A = (/) ) ) |
10 |
8 9
|
syl5ib |
|- ( U. A = |^| A -> ( A = (/) -> |^| A = (/) ) ) |
11 |
10
|
imp |
|- ( ( U. A = |^| A /\ A = (/) ) -> |^| A = (/) ) |
12 |
5 11
|
eqtr3d |
|- ( ( U. A = |^| A /\ A = (/) ) -> _V = (/) ) |
13 |
12
|
ex |
|- ( U. A = |^| A -> ( A = (/) -> _V = (/) ) ) |
14 |
13
|
necon3d |
|- ( U. A = |^| A -> ( _V =/= (/) -> A =/= (/) ) ) |
15 |
1 14
|
mpi |
|- ( U. A = |^| A -> A =/= (/) ) |
16 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
17 |
15 16
|
sylib |
|- ( U. A = |^| A -> E. x x e. A ) |
18 |
|
vex |
|- x e. _V |
19 |
|
vex |
|- y e. _V |
20 |
18 19
|
prss |
|- ( ( x e. A /\ y e. A ) <-> { x , y } C_ A ) |
21 |
|
uniss |
|- ( { x , y } C_ A -> U. { x , y } C_ U. A ) |
22 |
21
|
adantl |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ U. A ) |
23 |
|
simpl |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. A = |^| A ) |
24 |
22 23
|
sseqtrd |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ |^| A ) |
25 |
|
intss |
|- ( { x , y } C_ A -> |^| A C_ |^| { x , y } ) |
26 |
25
|
adantl |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> |^| A C_ |^| { x , y } ) |
27 |
24 26
|
sstrd |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> U. { x , y } C_ |^| { x , y } ) |
28 |
18 19
|
unipr |
|- U. { x , y } = ( x u. y ) |
29 |
18 19
|
intpr |
|- |^| { x , y } = ( x i^i y ) |
30 |
27 28 29
|
3sstr3g |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> ( x u. y ) C_ ( x i^i y ) ) |
31 |
|
inss1 |
|- ( x i^i y ) C_ x |
32 |
|
ssun1 |
|- x C_ ( x u. y ) |
33 |
31 32
|
sstri |
|- ( x i^i y ) C_ ( x u. y ) |
34 |
|
eqss |
|- ( ( x u. y ) = ( x i^i y ) <-> ( ( x u. y ) C_ ( x i^i y ) /\ ( x i^i y ) C_ ( x u. y ) ) ) |
35 |
|
uneqin |
|- ( ( x u. y ) = ( x i^i y ) <-> x = y ) |
36 |
34 35
|
bitr3i |
|- ( ( ( x u. y ) C_ ( x i^i y ) /\ ( x i^i y ) C_ ( x u. y ) ) <-> x = y ) |
37 |
30 33 36
|
sylanblc |
|- ( ( U. A = |^| A /\ { x , y } C_ A ) -> x = y ) |
38 |
37
|
ex |
|- ( U. A = |^| A -> ( { x , y } C_ A -> x = y ) ) |
39 |
20 38
|
syl5bi |
|- ( U. A = |^| A -> ( ( x e. A /\ y e. A ) -> x = y ) ) |
40 |
39
|
alrimivv |
|- ( U. A = |^| A -> A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) |
41 |
17 40
|
jca |
|- ( U. A = |^| A -> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
42 |
|
euabsn |
|- ( E! x x e. A <-> E. x { x | x e. A } = { x } ) |
43 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
44 |
43
|
eu4 |
|- ( E! x x e. A <-> ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) ) |
45 |
|
abid2 |
|- { x | x e. A } = A |
46 |
45
|
eqeq1i |
|- ( { x | x e. A } = { x } <-> A = { x } ) |
47 |
46
|
exbii |
|- ( E. x { x | x e. A } = { x } <-> E. x A = { x } ) |
48 |
42 44 47
|
3bitr3i |
|- ( ( E. x x e. A /\ A. x A. y ( ( x e. A /\ y e. A ) -> x = y ) ) <-> E. x A = { x } ) |
49 |
41 48
|
sylib |
|- ( U. A = |^| A -> E. x A = { x } ) |
50 |
18
|
unisn |
|- U. { x } = x |
51 |
|
unieq |
|- ( A = { x } -> U. A = U. { x } ) |
52 |
|
inteq |
|- ( A = { x } -> |^| A = |^| { x } ) |
53 |
18
|
intsn |
|- |^| { x } = x |
54 |
52 53
|
eqtrdi |
|- ( A = { x } -> |^| A = x ) |
55 |
50 51 54
|
3eqtr4a |
|- ( A = { x } -> U. A = |^| A ) |
56 |
55
|
exlimiv |
|- ( E. x A = { x } -> U. A = |^| A ) |
57 |
49 56
|
impbii |
|- ( U. A = |^| A <-> E. x A = { x } ) |