| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniioombl.1 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 2 |  | uniioombl.2 |  |-  ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) | 
						
							| 3 |  | uniioombl.3 |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 4 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 5 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 6 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 7 | 5 6 | sstri |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) | 
						
							| 8 |  | fss |  |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) | 
						
							| 9 | 1 7 8 | sylancl |  |-  ( ph -> F : NN --> ( RR* X. RR* ) ) | 
						
							| 10 |  | fco |  |-  ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) | 
						
							| 11 | 4 9 10 | sylancr |  |-  ( ph -> ( (,) o. F ) : NN --> ~P RR ) | 
						
							| 12 | 11 | frnd |  |-  ( ph -> ran ( (,) o. F ) C_ ~P RR ) | 
						
							| 13 |  | sspwuni |  |-  ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) | 
						
							| 14 | 12 13 | sylib |  |-  ( ph -> U. ran ( (,) o. F ) C_ RR ) | 
						
							| 15 |  | elpwi |  |-  ( z e. ~P RR -> z C_ RR ) | 
						
							| 16 | 15 | ad2antrl |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> z C_ RR ) | 
						
							| 17 |  | simprr |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` z ) e. RR ) | 
						
							| 18 |  | rphalfcl |  |-  ( r e. RR+ -> ( r / 2 ) e. RR+ ) | 
						
							| 19 | 18 | rphalfcld |  |-  ( r e. RR+ -> ( ( r / 2 ) / 2 ) e. RR+ ) | 
						
							| 20 |  | eqid |  |-  seq 1 ( + , ( ( abs o. - ) o. f ) ) = seq 1 ( + , ( ( abs o. - ) o. f ) ) | 
						
							| 21 | 20 | ovolgelb |  |-  ( ( z C_ RR /\ ( vol* ` z ) e. RR /\ ( ( r / 2 ) / 2 ) e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) | 
						
							| 22 | 16 17 19 21 | syl2an3an |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) | 
						
							| 23 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 24 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) | 
						
							| 25 |  | eqid |  |-  U. ran ( (,) o. F ) = U. ran ( (,) o. F ) | 
						
							| 26 | 17 | adantr |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( vol* ` z ) e. RR ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( vol* ` z ) e. RR ) | 
						
							| 28 | 18 | adantl |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( r / 2 ) e. RR+ ) | 
						
							| 30 | 29 | rphalfcld |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( ( r / 2 ) / 2 ) e. RR+ ) | 
						
							| 31 |  | elmapi |  |-  ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 32 | 31 | ad2antrl |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 33 |  | simprrl |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> z C_ U. ran ( (,) o. f ) ) | 
						
							| 34 |  | simprrr |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) | 
						
							| 35 | 23 24 3 25 27 30 32 33 20 34 | uniioombllem6 |  |-  ( ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) /\ ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ ( z C_ U. ran ( (,) o. f ) /\ sup ( ran seq 1 ( + , ( ( abs o. - ) o. f ) ) , RR* , < ) <_ ( ( vol* ` z ) + ( ( r / 2 ) / 2 ) ) ) ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) ) | 
						
							| 36 | 22 35 | rexlimddv |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) ) | 
						
							| 37 |  | rpcn |  |-  ( r e. RR+ -> r e. CC ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> r e. CC ) | 
						
							| 39 |  | 2cnd |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 2 e. CC ) | 
						
							| 40 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 41 | 40 | a1i |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 2 =/= 0 ) | 
						
							| 42 | 38 39 39 41 41 | divdiv1d |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( r / 2 ) / 2 ) = ( r / ( 2 x. 2 ) ) ) | 
						
							| 43 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 44 | 43 | oveq2i |  |-  ( r / ( 2 x. 2 ) ) = ( r / 4 ) | 
						
							| 45 | 42 44 | eqtrdi |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( r / 2 ) / 2 ) = ( r / 4 ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( ( r / 2 ) / 2 ) ) = ( 4 x. ( r / 4 ) ) ) | 
						
							| 47 |  | 4cn |  |-  4 e. CC | 
						
							| 48 | 47 | a1i |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 4 e. CC ) | 
						
							| 49 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 50 | 49 | a1i |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> 4 =/= 0 ) | 
						
							| 51 | 38 48 50 | divcan2d |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( r / 4 ) ) = r ) | 
						
							| 52 | 46 51 | eqtrd |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( 4 x. ( ( r / 2 ) / 2 ) ) = r ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` z ) + ( 4 x. ( ( r / 2 ) / 2 ) ) ) = ( ( vol* ` z ) + r ) ) | 
						
							| 54 | 36 53 | breqtrd |  |-  ( ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) /\ r e. RR+ ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) | 
						
							| 55 | 54 | ralrimiva |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) | 
						
							| 56 |  | inss1 |  |-  ( z i^i U. ran ( (,) o. F ) ) C_ z | 
						
							| 57 | 56 | a1i |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( z i^i U. ran ( (,) o. F ) ) C_ z ) | 
						
							| 58 |  | ovolsscl |  |-  ( ( ( z i^i U. ran ( (,) o. F ) ) C_ z /\ z C_ RR /\ ( vol* ` z ) e. RR ) -> ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) e. RR ) | 
						
							| 59 | 57 16 17 58 | syl3anc |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) e. RR ) | 
						
							| 60 |  | difssd |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( z \ U. ran ( (,) o. F ) ) C_ z ) | 
						
							| 61 |  | ovolsscl |  |-  ( ( ( z \ U. ran ( (,) o. F ) ) C_ z /\ z C_ RR /\ ( vol* ` z ) e. RR ) -> ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) e. RR ) | 
						
							| 62 | 60 16 17 61 | syl3anc |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) e. RR ) | 
						
							| 63 | 59 62 | readdcld |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) e. RR ) | 
						
							| 64 |  | alrple |  |-  ( ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) e. RR /\ ( vol* ` z ) e. RR ) -> ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) <-> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) ) | 
						
							| 65 | 63 17 64 | syl2anc |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) <-> A. r e. RR+ ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( ( vol* ` z ) + r ) ) ) | 
						
							| 66 | 55 65 | mpbird |  |-  ( ( ph /\ ( z e. ~P RR /\ ( vol* ` z ) e. RR ) ) -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) | 
						
							| 67 | 66 | expr |  |-  ( ( ph /\ z e. ~P RR ) -> ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) | 
						
							| 68 | 67 | ralrimiva |  |-  ( ph -> A. z e. ~P RR ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) | 
						
							| 69 |  | ismbl2 |  |-  ( U. ran ( (,) o. F ) e. dom vol <-> ( U. ran ( (,) o. F ) C_ RR /\ A. z e. ~P RR ( ( vol* ` z ) e. RR -> ( ( vol* ` ( z i^i U. ran ( (,) o. F ) ) ) + ( vol* ` ( z \ U. ran ( (,) o. F ) ) ) ) <_ ( vol* ` z ) ) ) ) | 
						
							| 70 | 14 68 69 | sylanbrc |  |-  ( ph -> U. ran ( (,) o. F ) e. dom vol ) |