Metamath Proof Explorer


Theorem uniioombllem1

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) )
uniioombl.2
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) )
uniioombl.3
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) )
uniioombl.a
|- A = U. ran ( (,) o. F )
uniioombl.e
|- ( ph -> ( vol* ` E ) e. RR )
uniioombl.c
|- ( ph -> C e. RR+ )
uniioombl.g
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) )
uniioombl.s
|- ( ph -> E C_ U. ran ( (,) o. G ) )
uniioombl.t
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) )
uniioombl.v
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) )
Assertion uniioombllem1
|- ( ph -> sup ( ran T , RR* , < ) e. RR )

Proof

Step Hyp Ref Expression
1 uniioombl.1
 |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) )
2 uniioombl.2
 |-  ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) )
3 uniioombl.3
 |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) )
4 uniioombl.a
 |-  A = U. ran ( (,) o. F )
5 uniioombl.e
 |-  ( ph -> ( vol* ` E ) e. RR )
6 uniioombl.c
 |-  ( ph -> C e. RR+ )
7 uniioombl.g
 |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) )
8 uniioombl.s
 |-  ( ph -> E C_ U. ran ( (,) o. G ) )
9 uniioombl.t
 |-  T = seq 1 ( + , ( ( abs o. - ) o. G ) )
10 uniioombl.v
 |-  ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) )
11 eqid
 |-  ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G )
12 11 9 ovolsf
 |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) )
13 7 12 syl
 |-  ( ph -> T : NN --> ( 0 [,) +oo ) )
14 13 frnd
 |-  ( ph -> ran T C_ ( 0 [,) +oo ) )
15 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
16 14 15 sstrdi
 |-  ( ph -> ran T C_ RR )
17 1nn
 |-  1 e. NN
18 13 fdmd
 |-  ( ph -> dom T = NN )
19 17 18 eleqtrrid
 |-  ( ph -> 1 e. dom T )
20 19 ne0d
 |-  ( ph -> dom T =/= (/) )
21 dm0rn0
 |-  ( dom T = (/) <-> ran T = (/) )
22 21 necon3bii
 |-  ( dom T =/= (/) <-> ran T =/= (/) )
23 20 22 sylib
 |-  ( ph -> ran T =/= (/) )
24 icossxr
 |-  ( 0 [,) +oo ) C_ RR*
25 14 24 sstrdi
 |-  ( ph -> ran T C_ RR* )
26 supxrcl
 |-  ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* )
27 25 26 syl
 |-  ( ph -> sup ( ran T , RR* , < ) e. RR* )
28 6 rpred
 |-  ( ph -> C e. RR )
29 5 28 readdcld
 |-  ( ph -> ( ( vol* ` E ) + C ) e. RR )
30 29 rexrd
 |-  ( ph -> ( ( vol* ` E ) + C ) e. RR* )
31 pnfxr
 |-  +oo e. RR*
32 31 a1i
 |-  ( ph -> +oo e. RR* )
33 29 ltpnfd
 |-  ( ph -> ( ( vol* ` E ) + C ) < +oo )
34 27 30 32 10 33 xrlelttrd
 |-  ( ph -> sup ( ran T , RR* , < ) < +oo )
35 supxrbnd
 |-  ( ( ran T C_ RR /\ ran T =/= (/) /\ sup ( ran T , RR* , < ) < +oo ) -> sup ( ran T , RR* , < ) e. RR )
36 16 23 34 35 syl3anc
 |-  ( ph -> sup ( ran T , RR* , < ) e. RR )