Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
4 |
|
uniioombl.a |
|- A = U. ran ( (,) o. F ) |
5 |
|
uniioombl.e |
|- ( ph -> ( vol* ` E ) e. RR ) |
6 |
|
uniioombl.c |
|- ( ph -> C e. RR+ ) |
7 |
|
uniioombl.g |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
8 |
|
uniioombl.s |
|- ( ph -> E C_ U. ran ( (,) o. G ) ) |
9 |
|
uniioombl.t |
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
10 |
|
uniioombl.v |
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
11 |
|
eqid |
|- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
12 |
11 9
|
ovolsf |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
13 |
7 12
|
syl |
|- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
14 |
13
|
frnd |
|- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
15 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
16 |
14 15
|
sstrdi |
|- ( ph -> ran T C_ RR ) |
17 |
|
1nn |
|- 1 e. NN |
18 |
13
|
fdmd |
|- ( ph -> dom T = NN ) |
19 |
17 18
|
eleqtrrid |
|- ( ph -> 1 e. dom T ) |
20 |
19
|
ne0d |
|- ( ph -> dom T =/= (/) ) |
21 |
|
dm0rn0 |
|- ( dom T = (/) <-> ran T = (/) ) |
22 |
21
|
necon3bii |
|- ( dom T =/= (/) <-> ran T =/= (/) ) |
23 |
20 22
|
sylib |
|- ( ph -> ran T =/= (/) ) |
24 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
25 |
14 24
|
sstrdi |
|- ( ph -> ran T C_ RR* ) |
26 |
|
supxrcl |
|- ( ran T C_ RR* -> sup ( ran T , RR* , < ) e. RR* ) |
27 |
25 26
|
syl |
|- ( ph -> sup ( ran T , RR* , < ) e. RR* ) |
28 |
6
|
rpred |
|- ( ph -> C e. RR ) |
29 |
5 28
|
readdcld |
|- ( ph -> ( ( vol* ` E ) + C ) e. RR ) |
30 |
29
|
rexrd |
|- ( ph -> ( ( vol* ` E ) + C ) e. RR* ) |
31 |
|
pnfxr |
|- +oo e. RR* |
32 |
31
|
a1i |
|- ( ph -> +oo e. RR* ) |
33 |
29
|
ltpnfd |
|- ( ph -> ( ( vol* ` E ) + C ) < +oo ) |
34 |
27 30 32 10 33
|
xrlelttrd |
|- ( ph -> sup ( ran T , RR* , < ) < +oo ) |
35 |
|
supxrbnd |
|- ( ( ran T C_ RR /\ ran T =/= (/) /\ sup ( ran T , RR* , < ) < +oo ) -> sup ( ran T , RR* , < ) e. RR ) |
36 |
16 23 34 35
|
syl3anc |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |