Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
4 |
|
uniioombl.a |
|- A = U. ran ( (,) o. F ) |
5 |
|
uniioombl.e |
|- ( ph -> ( vol* ` E ) e. RR ) |
6 |
|
uniioombl.c |
|- ( ph -> C e. RR+ ) |
7 |
|
uniioombl.g |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
8 |
|
uniioombl.s |
|- ( ph -> E C_ U. ran ( (,) o. G ) ) |
9 |
|
uniioombl.t |
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
10 |
|
uniioombl.v |
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
11 |
1
|
adantr |
|- ( ( ph /\ J e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
12 |
11
|
ffvelrnda |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) e. ( <_ i^i ( RR X. RR ) ) ) |
13 |
12
|
elin2d |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) e. ( RR X. RR ) ) |
14 |
|
1st2nd2 |
|- ( ( F ` z ) e. ( RR X. RR ) -> ( F ` z ) = <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
15 |
13 14
|
syl |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( F ` z ) = <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
16 |
15
|
fveq2d |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( F ` z ) ) = ( (,) ` <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) ) |
17 |
|
df-ov |
|- ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) = ( (,) ` <. ( 1st ` ( F ` z ) ) , ( 2nd ` ( F ` z ) ) >. ) |
18 |
16 17
|
eqtr4di |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( F ` z ) ) = ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) ) |
19 |
7
|
ffvelrnda |
|- ( ( ph /\ J e. NN ) -> ( G ` J ) e. ( <_ i^i ( RR X. RR ) ) ) |
20 |
19
|
elin2d |
|- ( ( ph /\ J e. NN ) -> ( G ` J ) e. ( RR X. RR ) ) |
21 |
|
1st2nd2 |
|- ( ( G ` J ) e. ( RR X. RR ) -> ( G ` J ) = <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
22 |
20 21
|
syl |
|- ( ( ph /\ J e. NN ) -> ( G ` J ) = <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ J e. NN ) -> ( (,) ` ( G ` J ) ) = ( (,) ` <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) ) |
24 |
|
df-ov |
|- ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) = ( (,) ` <. ( 1st ` ( G ` J ) ) , ( 2nd ` ( G ` J ) ) >. ) |
25 |
23 24
|
eqtr4di |
|- ( ( ph /\ J e. NN ) -> ( (,) ` ( G ` J ) ) = ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( (,) ` ( G ` J ) ) = ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) |
27 |
18 26
|
ineq12d |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) = ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) ) |
28 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ z e. NN ) -> ( ( 1st ` ( F ` z ) ) e. RR /\ ( 2nd ` ( F ` z ) ) e. RR /\ ( 1st ` ( F ` z ) ) <_ ( 2nd ` ( F ` z ) ) ) ) |
29 |
11 28
|
sylan |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( 1st ` ( F ` z ) ) e. RR /\ ( 2nd ` ( F ` z ) ) e. RR /\ ( 1st ` ( F ` z ) ) <_ ( 2nd ` ( F ` z ) ) ) ) |
30 |
29
|
simp1d |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( F ` z ) ) e. RR ) |
31 |
30
|
rexrd |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( F ` z ) ) e. RR* ) |
32 |
29
|
simp2d |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( F ` z ) ) e. RR ) |
33 |
32
|
rexrd |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( F ` z ) ) e. RR* ) |
34 |
|
ovolfcl |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ J e. NN ) -> ( ( 1st ` ( G ` J ) ) e. RR /\ ( 2nd ` ( G ` J ) ) e. RR /\ ( 1st ` ( G ` J ) ) <_ ( 2nd ` ( G ` J ) ) ) ) |
35 |
7 34
|
sylan |
|- ( ( ph /\ J e. NN ) -> ( ( 1st ` ( G ` J ) ) e. RR /\ ( 2nd ` ( G ` J ) ) e. RR /\ ( 1st ` ( G ` J ) ) <_ ( 2nd ` ( G ` J ) ) ) ) |
36 |
35
|
simp1d |
|- ( ( ph /\ J e. NN ) -> ( 1st ` ( G ` J ) ) e. RR ) |
37 |
36
|
rexrd |
|- ( ( ph /\ J e. NN ) -> ( 1st ` ( G ` J ) ) e. RR* ) |
38 |
37
|
adantr |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 1st ` ( G ` J ) ) e. RR* ) |
39 |
35
|
simp2d |
|- ( ( ph /\ J e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR ) |
40 |
39
|
rexrd |
|- ( ( ph /\ J e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR* ) |
41 |
40
|
adantr |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( 2nd ` ( G ` J ) ) e. RR* ) |
42 |
|
iooin |
|- ( ( ( ( 1st ` ( F ` z ) ) e. RR* /\ ( 2nd ` ( F ` z ) ) e. RR* ) /\ ( ( 1st ` ( G ` J ) ) e. RR* /\ ( 2nd ` ( G ` J ) ) e. RR* ) ) -> ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
43 |
31 33 38 41 42
|
syl22anc |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( ( 1st ` ( F ` z ) ) (,) ( 2nd ` ( F ` z ) ) ) i^i ( ( 1st ` ( G ` J ) ) (,) ( 2nd ` ( G ` J ) ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
44 |
27 43
|
eqtrd |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) = ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) ) |
45 |
|
ioorebas |
|- ( if ( ( 1st ` ( F ` z ) ) <_ ( 1st ` ( G ` J ) ) , ( 1st ` ( G ` J ) ) , ( 1st ` ( F ` z ) ) ) (,) if ( ( 2nd ` ( F ` z ) ) <_ ( 2nd ` ( G ` J ) ) , ( 2nd ` ( F ` z ) ) , ( 2nd ` ( G ` J ) ) ) ) e. ran (,) |
46 |
44 45
|
eqeltrdi |
|- ( ( ( ph /\ J e. NN ) /\ z e. NN ) -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` J ) ) ) e. ran (,) ) |