Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
4 |
|
uniioombl.a |
|- A = U. ran ( (,) o. F ) |
5 |
|
uniioombl.e |
|- ( ph -> ( vol* ` E ) e. RR ) |
6 |
|
uniioombl.c |
|- ( ph -> C e. RR+ ) |
7 |
|
uniioombl.g |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
8 |
|
uniioombl.s |
|- ( ph -> E C_ U. ran ( (,) o. G ) ) |
9 |
|
uniioombl.t |
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
10 |
|
uniioombl.v |
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
11 |
|
uniioombl.m |
|- ( ph -> M e. NN ) |
12 |
|
uniioombl.m2 |
|- ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C ) |
13 |
|
uniioombl.k |
|- K = U. ( ( (,) o. G ) " ( 1 ... M ) ) |
14 |
|
uniioombl.n |
|- ( ph -> N e. NN ) |
15 |
|
uniioombl.n2 |
|- ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
16 |
|
uniioombl.l |
|- L = U. ( ( (,) o. F ) " ( 1 ... N ) ) |
17 |
|
inss1 |
|- ( K i^i A ) C_ K |
18 |
|
imassrn |
|- ( ( (,) o. G ) " ( 1 ... M ) ) C_ ran ( (,) o. G ) |
19 |
18
|
unissi |
|- U. ( ( (,) o. G ) " ( 1 ... M ) ) C_ U. ran ( (,) o. G ) |
20 |
13 19
|
eqsstri |
|- K C_ U. ran ( (,) o. G ) |
21 |
7
|
uniiccdif |
|- ( ph -> ( U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) /\ ( vol* ` ( U. ran ( [,] o. G ) \ U. ran ( (,) o. G ) ) ) = 0 ) ) |
22 |
21
|
simpld |
|- ( ph -> U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) ) |
23 |
|
ovolficcss |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. G ) C_ RR ) |
24 |
7 23
|
syl |
|- ( ph -> U. ran ( [,] o. G ) C_ RR ) |
25 |
22 24
|
sstrd |
|- ( ph -> U. ran ( (,) o. G ) C_ RR ) |
26 |
20 25
|
sstrid |
|- ( ph -> K C_ RR ) |
27 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
28 |
|
ssid |
|- U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) |
29 |
9
|
ovollb |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) ) -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
30 |
7 28 29
|
sylancl |
|- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) |
31 |
|
ovollecl |
|- ( ( U. ran ( (,) o. G ) C_ RR /\ sup ( ran T , RR* , < ) e. RR /\ ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
32 |
25 27 30 31
|
syl3anc |
|- ( ph -> ( vol* ` U. ran ( (,) o. G ) ) e. RR ) |
33 |
|
ovolsscl |
|- ( ( K C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` K ) e. RR ) |
34 |
20 25 32 33
|
mp3an2i |
|- ( ph -> ( vol* ` K ) e. RR ) |
35 |
|
ovolsscl |
|- ( ( ( K i^i A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i A ) ) e. RR ) |
36 |
17 26 34 35
|
mp3an2i |
|- ( ph -> ( vol* ` ( K i^i A ) ) e. RR ) |
37 |
|
inss1 |
|- ( K i^i L ) C_ K |
38 |
|
ovolsscl |
|- ( ( ( K i^i L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i L ) ) e. RR ) |
39 |
37 26 34 38
|
mp3an2i |
|- ( ph -> ( vol* ` ( K i^i L ) ) e. RR ) |
40 |
|
ssun2 |
|- U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
41 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
42 |
14
|
peano2nnd |
|- ( ph -> ( N + 1 ) e. NN ) |
43 |
42 41
|
eleqtrdi |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
44 |
|
uzsplit |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
45 |
43 44
|
syl |
|- ( ph -> ( ZZ>= ` 1 ) = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
46 |
41 45
|
eqtrid |
|- ( ph -> NN = ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
47 |
14
|
nncnd |
|- ( ph -> N e. CC ) |
48 |
|
ax-1cn |
|- 1 e. CC |
49 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
50 |
47 48 49
|
sylancl |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
51 |
50
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
52 |
51
|
uneq1d |
|- ( ph -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
53 |
46 52
|
eqtrd |
|- ( ph -> NN = ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
54 |
53
|
iuneq1d |
|- ( ph -> U_ i e. NN ( (,) ` ( F ` i ) ) = U_ i e. ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ( (,) ` ( F ` i ) ) ) |
55 |
|
iunxun |
|- U_ i e. ( ( 1 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) ( (,) ` ( F ` i ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
56 |
54 55
|
eqtrdi |
|- ( ph -> U_ i e. NN ( (,) ` ( F ` i ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
57 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
58 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
59 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
60 |
58 59
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
61 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
62 |
1 60 61
|
sylancl |
|- ( ph -> F : NN --> ( RR* X. RR* ) ) |
63 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
64 |
57 62 63
|
sylancr |
|- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
65 |
|
ffn |
|- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
66 |
|
fniunfv |
|- ( ( (,) o. F ) Fn NN -> U_ i e. NN ( ( (,) o. F ) ` i ) = U. ran ( (,) o. F ) ) |
67 |
64 65 66
|
3syl |
|- ( ph -> U_ i e. NN ( ( (,) o. F ) ` i ) = U. ran ( (,) o. F ) ) |
68 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
69 |
1 68
|
sylan |
|- ( ( ph /\ i e. NN ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
70 |
69
|
iuneq2dv |
|- ( ph -> U_ i e. NN ( ( (,) o. F ) ` i ) = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
71 |
67 70
|
eqtr3d |
|- ( ph -> U. ran ( (,) o. F ) = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
72 |
4 71
|
eqtrid |
|- ( ph -> A = U_ i e. NN ( (,) ` ( F ` i ) ) ) |
73 |
|
ffun |
|- ( ( (,) o. F ) : NN --> ~P RR -> Fun ( (,) o. F ) ) |
74 |
|
funiunfv |
|- ( Fun ( (,) o. F ) -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
75 |
64 73 74
|
3syl |
|- ( ph -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) ) |
76 |
|
elfznn |
|- ( i e. ( 1 ... N ) -> i e. NN ) |
77 |
1 76 68
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` i ) = ( (,) ` ( F ` i ) ) ) |
78 |
77
|
iuneq2dv |
|- ( ph -> U_ i e. ( 1 ... N ) ( ( (,) o. F ) ` i ) = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
79 |
75 78
|
eqtr3d |
|- ( ph -> U. ( ( (,) o. F ) " ( 1 ... N ) ) = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
80 |
16 79
|
eqtrid |
|- ( ph -> L = U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
81 |
80
|
uneq1d |
|- ( ph -> ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
82 |
56 72 81
|
3eqtr4d |
|- ( ph -> A = ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
83 |
82
|
ineq2d |
|- ( ph -> ( K i^i A ) = ( K i^i ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) ) |
84 |
|
indi |
|- ( K i^i ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) = ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
85 |
83 84
|
eqtrdi |
|- ( ph -> ( K i^i A ) = ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) ) |
86 |
|
fss |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> G : NN --> ( RR* X. RR* ) ) |
87 |
7 60 86
|
sylancl |
|- ( ph -> G : NN --> ( RR* X. RR* ) ) |
88 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ G : NN --> ( RR* X. RR* ) ) -> ( (,) o. G ) : NN --> ~P RR ) |
89 |
57 87 88
|
sylancr |
|- ( ph -> ( (,) o. G ) : NN --> ~P RR ) |
90 |
|
ffun |
|- ( ( (,) o. G ) : NN --> ~P RR -> Fun ( (,) o. G ) ) |
91 |
|
funiunfv |
|- ( Fun ( (,) o. G ) -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
92 |
89 90 91
|
3syl |
|- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U. ( ( (,) o. G ) " ( 1 ... M ) ) ) |
93 |
|
elfznn |
|- ( j e. ( 1 ... M ) -> j e. NN ) |
94 |
|
fvco3 |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
95 |
7 93 94
|
syl2an |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) o. G ) ` j ) = ( (,) ` ( G ` j ) ) ) |
96 |
95
|
iuneq2dv |
|- ( ph -> U_ j e. ( 1 ... M ) ( ( (,) o. G ) ` j ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
97 |
92 96
|
eqtr3d |
|- ( ph -> U. ( ( (,) o. G ) " ( 1 ... M ) ) = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
98 |
13 97
|
eqtrid |
|- ( ph -> K = U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
99 |
98
|
ineq2d |
|- ( ph -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i K ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) ) |
100 |
|
incom |
|- ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i K ) |
101 |
|
iunin2 |
|- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
102 |
|
incom |
|- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
103 |
102
|
a1i |
|- ( i e. ( ZZ>= ` ( N + 1 ) ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) ) |
104 |
103
|
iuneq2i |
|- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
105 |
|
incom |
|- ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
106 |
101 104 105
|
3eqtr4ri |
|- ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) |
107 |
106
|
a1i |
|- ( j e. ( 1 ... M ) -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
108 |
107
|
iuneq2i |
|- U_ j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) |
109 |
|
iunin2 |
|- U_ j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
110 |
108 109
|
eqtr3i |
|- U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) i^i U_ j e. ( 1 ... M ) ( (,) ` ( G ` j ) ) ) |
111 |
99 100 110
|
3eqtr4g |
|- ( ph -> ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
112 |
111
|
uneq2d |
|- ( ph -> ( ( K i^i L ) u. ( K i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) = ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
113 |
85 112
|
eqtrd |
|- ( ph -> ( K i^i A ) = ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
114 |
40 113
|
sseqtrrid |
|- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( K i^i A ) ) |
115 |
114 17
|
sstrdi |
|- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
116 |
|
ovolsscl |
|- ( ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
117 |
115 26 34 116
|
syl3anc |
|- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
118 |
39 117
|
readdcld |
|- ( ph -> ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) e. RR ) |
119 |
6
|
rpred |
|- ( ph -> C e. RR ) |
120 |
39 119
|
readdcld |
|- ( ph -> ( ( vol* ` ( K i^i L ) ) + C ) e. RR ) |
121 |
113
|
fveq2d |
|- ( ph -> ( vol* ` ( K i^i A ) ) = ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
122 |
37 26
|
sstrid |
|- ( ph -> ( K i^i L ) C_ RR ) |
123 |
115 26
|
sstrd |
|- ( ph -> U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR ) |
124 |
|
ovolun |
|- ( ( ( ( K i^i L ) C_ RR /\ ( vol* ` ( K i^i L ) ) e. RR ) /\ ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) -> ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
125 |
122 39 123 117 124
|
syl22anc |
|- ( ph -> ( vol* ` ( ( K i^i L ) u. U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
126 |
121 125
|
eqbrtrd |
|- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
127 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
128 |
|
iunss |
|- ( U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K <-> A. j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
129 |
115 128
|
sylib |
|- ( ph -> A. j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
130 |
129
|
r19.21bi |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K ) |
131 |
26
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> K C_ RR ) |
132 |
34
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` K ) e. RR ) |
133 |
|
ovolsscl |
|- ( ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
134 |
130 131 132 133
|
syl3anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
135 |
127 134
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
136 |
130 131
|
sstrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR ) |
137 |
136 134
|
jca |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
138 |
137
|
ralrimiva |
|- ( ph -> A. j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
139 |
|
ovolfiniun |
|- ( ( ( 1 ... M ) e. Fin /\ A. j e. ( 1 ... M ) ( U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ RR /\ ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
140 |
127 138 139
|
syl2anc |
|- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
141 |
119 11
|
nndivred |
|- ( ph -> ( C / M ) e. RR ) |
142 |
141
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( C / M ) e. RR ) |
143 |
80
|
ineq2d |
|- ( ph -> ( ( (,) ` ( G ` j ) ) i^i L ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) ) |
144 |
143
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) ) |
145 |
102
|
a1i |
|- ( i e. ( 1 ... N ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) ) |
146 |
145
|
iuneq2i |
|- U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( 1 ... N ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) |
147 |
|
iunin2 |
|- U_ i e. ( 1 ... N ) ( ( (,) ` ( G ` j ) ) i^i ( (,) ` ( F ` i ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
148 |
146 147
|
eqtri |
|- U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) ) |
149 |
144 148
|
eqtr4di |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) = U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
150 |
|
fzfid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1 ... N ) e. Fin ) |
151 |
|
ffvelrn |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( F ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
152 |
1 76 151
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
153 |
152
|
elin2d |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) e. ( RR X. RR ) ) |
154 |
|
1st2nd2 |
|- ( ( F ` i ) e. ( RR X. RR ) -> ( F ` i ) = <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
155 |
153 154
|
syl |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( F ` i ) = <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
156 |
155
|
fveq2d |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) = ( (,) ` <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) ) |
157 |
|
df-ov |
|- ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) = ( (,) ` <. ( 1st ` ( F ` i ) ) , ( 2nd ` ( F ` i ) ) >. ) |
158 |
156 157
|
eqtr4di |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) = ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) ) |
159 |
|
ioombl |
|- ( ( 1st ` ( F ` i ) ) (,) ( 2nd ` ( F ` i ) ) ) e. dom vol |
160 |
158 159
|
eqeltrdi |
|- ( ( ph /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) e. dom vol ) |
161 |
160
|
adantlr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( F ` i ) ) e. dom vol ) |
162 |
|
ffvelrn |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
163 |
7 93 162
|
syl2an |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
164 |
163
|
elin2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
165 |
|
1st2nd2 |
|- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
166 |
164 165
|
syl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
167 |
166
|
fveq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
168 |
|
df-ov |
|- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
169 |
167 168
|
eqtr4di |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
170 |
|
ioombl |
|- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) e. dom vol |
171 |
169 170
|
eqeltrdi |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) e. dom vol ) |
172 |
171
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( G ` j ) ) e. dom vol ) |
173 |
|
inmbl |
|- ( ( ( (,) ` ( F ` i ) ) e. dom vol /\ ( (,) ` ( G ` j ) ) e. dom vol ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
174 |
161 172 173
|
syl2anc |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
175 |
174
|
ralrimiva |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> A. i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
176 |
|
finiunmbl |
|- ( ( ( 1 ... N ) e. Fin /\ A. i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) -> U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
177 |
150 175 176
|
syl2anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol ) |
178 |
149 177
|
eqeltrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) e. dom vol ) |
179 |
|
inss2 |
|- ( ( (,) ` ( G ` j ) ) i^i A ) C_ A |
180 |
1
|
uniiccdif |
|- ( ph -> ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ ( vol* ` ( U. ran ( [,] o. F ) \ U. ran ( (,) o. F ) ) ) = 0 ) ) |
181 |
180
|
simpld |
|- ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) ) |
182 |
|
ovolficcss |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
183 |
1 182
|
syl |
|- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
184 |
181 183
|
sstrd |
|- ( ph -> U. ran ( (,) o. F ) C_ RR ) |
185 |
4 184
|
eqsstrid |
|- ( ph -> A C_ RR ) |
186 |
185
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> A C_ RR ) |
187 |
179 186
|
sstrid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i A ) C_ RR ) |
188 |
|
inss1 |
|- ( ( (,) ` ( G ` j ) ) i^i A ) C_ ( (,) ` ( G ` j ) ) |
189 |
|
ioossre |
|- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
190 |
169 189
|
eqsstrdi |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
191 |
169
|
fveq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) |
192 |
|
ovolfcl |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
193 |
7 93 192
|
syl2an |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
194 |
|
ovolioo |
|- ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
195 |
193 194
|
syl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
196 |
191 195
|
eqtrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
197 |
193
|
simp2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
198 |
193
|
simp1d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
199 |
197 198
|
resubcld |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
200 |
196 199
|
eqeltrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
201 |
|
ovolsscl |
|- ( ( ( ( (,) ` ( G ` j ) ) i^i A ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) |
202 |
188 190 200 201
|
mp3an2i |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) |
203 |
|
mblsplit |
|- ( ( ( ( (,) ` ( G ` j ) ) i^i L ) e. dom vol /\ ( ( (,) ` ( G ` j ) ) i^i A ) C_ RR /\ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) ) |
204 |
178 187 202 203
|
syl3anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) ) |
205 |
|
imassrn |
|- ( ( (,) o. F ) " ( 1 ... N ) ) C_ ran ( (,) o. F ) |
206 |
205
|
unissi |
|- U. ( ( (,) o. F ) " ( 1 ... N ) ) C_ U. ran ( (,) o. F ) |
207 |
206 16 4
|
3sstr4i |
|- L C_ A |
208 |
|
sslin |
|- ( L C_ A -> ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) ) |
209 |
207 208
|
mp1i |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) ) |
210 |
|
sseqin2 |
|- ( ( ( (,) ` ( G ` j ) ) i^i L ) C_ ( ( (,) ` ( G ` j ) ) i^i A ) <-> ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) ) |
211 |
209 210
|
sylib |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) ) |
212 |
211
|
fveq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) = ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) ) |
213 |
|
indifdir |
|- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( A i^i ( (,) ` ( G ` j ) ) ) \ ( L i^i ( (,) ` ( G ` j ) ) ) ) |
214 |
|
incom |
|- ( A i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i A ) |
215 |
|
incom |
|- ( L i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i L ) |
216 |
214 215
|
difeq12i |
|- ( ( A i^i ( (,) ` ( G ` j ) ) ) \ ( L i^i ( (,) ` ( G ` j ) ) ) ) = ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) |
217 |
213 216
|
eqtri |
|- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) |
218 |
82
|
eqcomd |
|- ( ph -> ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A ) |
219 |
80
|
ineq1d |
|- ( ph -> ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
220 |
|
2fveq3 |
|- ( x = i -> ( (,) ` ( F ` x ) ) = ( (,) ` ( F ` i ) ) ) |
221 |
220
|
cbvdisjv |
|- ( Disj_ x e. NN ( (,) ` ( F ` x ) ) <-> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
222 |
2 221
|
sylib |
|- ( ph -> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
223 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
224 |
223
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
225 |
|
uzss |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` 1 ) ) |
226 |
43 225
|
syl |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` 1 ) ) |
227 |
226 41
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ NN ) |
228 |
51
|
ineq1d |
|- ( ph -> ( ( 1 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) ) |
229 |
|
uzdisj |
|- ( ( 1 ... ( ( N + 1 ) - 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
230 |
228 229
|
eqtr3di |
|- ( ph -> ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) |
231 |
|
disjiun |
|- ( ( Disj_ i e. NN ( (,) ` ( F ` i ) ) /\ ( ( 1 ... N ) C_ NN /\ ( ZZ>= ` ( N + 1 ) ) C_ NN /\ ( ( 1 ... N ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) ) ) -> ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
232 |
222 224 227 230 231
|
syl13anc |
|- ( ph -> ( U_ i e. ( 1 ... N ) ( (,) ` ( F ` i ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
233 |
219 232
|
eqtrd |
|- ( ph -> ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) |
234 |
|
uneqdifeq |
|- ( ( L C_ A /\ ( L i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = (/) ) -> ( ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A <-> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
235 |
207 233 234
|
sylancr |
|- ( ph -> ( ( L u. U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) = A <-> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
236 |
218 235
|
mpbid |
|- ( ph -> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
237 |
236
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( A \ L ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
238 |
237
|
ineq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( (,) ` ( G ` j ) ) i^i ( A \ L ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) ) |
239 |
|
incom |
|- ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i ( A \ L ) ) |
240 |
104 101
|
eqtri |
|- U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( G ` j ) ) i^i U_ i e. ( ZZ>= ` ( N + 1 ) ) ( (,) ` ( F ` i ) ) ) |
241 |
238 239 240
|
3eqtr4g |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( A \ L ) i^i ( (,) ` ( G ` j ) ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
242 |
217 241
|
eqtr3id |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) = U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
243 |
242
|
fveq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) = ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
244 |
212 243
|
oveq12d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) i^i ( ( (,) ` ( G ` j ) ) i^i L ) ) ) + ( vol* ` ( ( ( (,) ` ( G ` j ) ) i^i A ) \ ( ( (,) ` ( G ` j ) ) i^i L ) ) ) ) = ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
245 |
204 244
|
eqtrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) |
246 |
202 142
|
resubcld |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) e. RR ) |
247 |
|
inss2 |
|- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) |
248 |
190
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
249 |
200
|
adantr |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
250 |
|
ovolsscl |
|- ( ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
251 |
247 248 249 250
|
mp3an2i |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
252 |
150 251
|
fsumrecl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
253 |
15
|
r19.21bi |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) ) |
254 |
252 202 142
|
absdifltd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) <-> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) < ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) + ( C / M ) ) ) ) ) |
255 |
253 254
|
mpbid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) /\ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) < ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) + ( C / M ) ) ) ) |
256 |
255
|
simpld |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) < sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
257 |
246 252 256
|
ltled |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
258 |
149
|
fveq2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
259 |
|
mblvol |
|- ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
260 |
174 259
|
syl |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
261 |
260 251
|
eqeltrd |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
262 |
174 261
|
jca |
|- ( ( ( ph /\ j e. ( 1 ... M ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
263 |
262
|
ralrimiva |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> A. i e. ( 1 ... N ) ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) ) |
264 |
|
inss1 |
|- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) |
265 |
264
|
rgenw |
|- A. i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) |
266 |
222
|
adantr |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. NN ( (,) ` ( F ` i ) ) ) |
267 |
|
disjss2 |
|- ( A. i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( F ` i ) ) -> ( Disj_ i e. NN ( (,) ` ( F ` i ) ) -> Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
268 |
265 266 267
|
mpsyl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
269 |
|
disjss1 |
|- ( ( 1 ... N ) C_ NN -> ( Disj_ i e. NN ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) -> Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
270 |
223 268 269
|
mpsyl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
271 |
|
volfiniun |
|- ( ( ( 1 ... N ) e. Fin /\ A. i e. ( 1 ... N ) ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol /\ ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) /\ Disj_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
272 |
150 263 270 271
|
syl3anc |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
273 |
|
mblvol |
|- ( U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. dom vol -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
274 |
177 273
|
syl |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
275 |
260
|
sumeq2dv |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> sum_ i e. ( 1 ... N ) ( vol ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
276 |
272 274 275
|
3eqtr3d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( 1 ... N ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
277 |
258 276
|
eqtrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) = sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
278 |
257 277
|
breqtrrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) ) |
279 |
277 252
|
eqeltrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) e. RR ) |
280 |
202 142 279
|
lesubaddd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) - ( C / M ) ) <_ ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) <-> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) ) |
281 |
278 280
|
mpbid |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) |
282 |
245 281
|
eqbrtrrd |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) |
283 |
134 142 279
|
leadd2d |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ ( C / M ) <-> ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( ( (,) ` ( G ` j ) ) i^i L ) ) + ( C / M ) ) ) ) |
284 |
282 283
|
mpbird |
|- ( ( ph /\ j e. ( 1 ... M ) ) -> ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ ( C / M ) ) |
285 |
127 134 142 284
|
fsumle |
|- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ sum_ j e. ( 1 ... M ) ( C / M ) ) |
286 |
141
|
recnd |
|- ( ph -> ( C / M ) e. CC ) |
287 |
|
fsumconst |
|- ( ( ( 1 ... M ) e. Fin /\ ( C / M ) e. CC ) -> sum_ j e. ( 1 ... M ) ( C / M ) = ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) ) |
288 |
127 286 287
|
syl2anc |
|- ( ph -> sum_ j e. ( 1 ... M ) ( C / M ) = ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) ) |
289 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
290 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
291 |
11 289 290
|
3syl |
|- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
292 |
291
|
oveq1d |
|- ( ph -> ( ( # ` ( 1 ... M ) ) x. ( C / M ) ) = ( M x. ( C / M ) ) ) |
293 |
119
|
recnd |
|- ( ph -> C e. CC ) |
294 |
11
|
nncnd |
|- ( ph -> M e. CC ) |
295 |
11
|
nnne0d |
|- ( ph -> M =/= 0 ) |
296 |
293 294 295
|
divcan2d |
|- ( ph -> ( M x. ( C / M ) ) = C ) |
297 |
288 292 296
|
3eqtrd |
|- ( ph -> sum_ j e. ( 1 ... M ) ( C / M ) = C ) |
298 |
285 297
|
breqtrd |
|- ( ph -> sum_ j e. ( 1 ... M ) ( vol* ` U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ C ) |
299 |
117 135 119 140 298
|
letrd |
|- ( ph -> ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) <_ C ) |
300 |
117 119 39 299
|
leadd2dd |
|- ( ph -> ( ( vol* ` ( K i^i L ) ) + ( vol* ` U_ j e. ( 1 ... M ) U_ i e. ( ZZ>= ` ( N + 1 ) ) ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |
301 |
36 118 120 126 300
|
letrd |
|- ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) ) |