| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uniioombl.1 | 
							 |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							uniioombl.2 | 
							 |-  ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							uniioombl.3 | 
							 |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) )  | 
						
						
							| 4 | 
							
								
							 | 
							uniioombl.a | 
							 |-  A = U. ran ( (,) o. F )  | 
						
						
							| 5 | 
							
								
							 | 
							uniioombl.e | 
							 |-  ( ph -> ( vol* ` E ) e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							uniioombl.c | 
							 |-  ( ph -> C e. RR+ )  | 
						
						
							| 7 | 
							
								
							 | 
							uniioombl.g | 
							 |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							uniioombl.s | 
							 |-  ( ph -> E C_ U. ran ( (,) o. G ) )  | 
						
						
							| 9 | 
							
								
							 | 
							uniioombl.t | 
							 |-  T = seq 1 ( + , ( ( abs o. - ) o. G ) )  | 
						
						
							| 10 | 
							
								
							 | 
							uniioombl.v | 
							 |-  ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) )  | 
						
						
							| 11 | 
							
								
							 | 
							uniioombl.m | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 12 | 
							
								
							 | 
							uniioombl.m2 | 
							 |-  ( ph -> ( abs ` ( ( T ` M ) - sup ( ran T , RR* , < ) ) ) < C )  | 
						
						
							| 13 | 
							
								
							 | 
							uniioombl.k | 
							 |-  K = U. ( ( (,) o. G ) " ( 1 ... M ) )  | 
						
						
							| 14 | 
							
								
							 | 
							uniioombl.n | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 15 | 
							
								
							 | 
							uniioombl.n2 | 
							 |-  ( ph -> A. j e. ( 1 ... M ) ( abs ` ( sum_ i e. ( 1 ... N ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / M ) )  | 
						
						
							| 16 | 
							
								
							 | 
							uniioombl.l | 
							 |-  L = U. ( ( (,) o. F ) " ( 1 ... N ) )  | 
						
						
							| 17 | 
							
								
							 | 
							inss1 | 
							 |-  ( E i^i A ) C_ E  | 
						
						
							| 18 | 
							
								7
							 | 
							uniiccdif | 
							 |-  ( ph -> ( U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) /\ ( vol* ` ( U. ran ( [,] o. G ) \ U. ran ( (,) o. G ) ) ) = 0 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simpld | 
							 |-  ( ph -> U. ran ( (,) o. G ) C_ U. ran ( [,] o. G ) )  | 
						
						
							| 20 | 
							
								
							 | 
							ovolficcss | 
							 |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. G ) C_ RR )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							syl | 
							 |-  ( ph -> U. ran ( [,] o. G ) C_ RR )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							sstrd | 
							 |-  ( ph -> U. ran ( (,) o. G ) C_ RR )  | 
						
						
							| 23 | 
							
								8 22
							 | 
							sstrd | 
							 |-  ( ph -> E C_ RR )  | 
						
						
							| 24 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( E i^i A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E i^i A ) ) e. RR )  | 
						
						
							| 25 | 
							
								17 23 5 24
							 | 
							mp3an2i | 
							 |-  ( ph -> ( vol* ` ( E i^i A ) ) e. RR )  | 
						
						
							| 26 | 
							
								
							 | 
							difssd | 
							 |-  ( ph -> ( E \ A ) C_ E )  | 
						
						
							| 27 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( E \ A ) C_ E /\ E C_ RR /\ ( vol* ` E ) e. RR ) -> ( vol* ` ( E \ A ) ) e. RR )  | 
						
						
							| 28 | 
							
								26 23 5 27
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol* ` ( E \ A ) ) e. RR )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) e. RR )  | 
						
						
							| 30 | 
							
								
							 | 
							inss1 | 
							 |-  ( K i^i A ) C_ K  | 
						
						
							| 31 | 
							
								
							 | 
							imassrn | 
							 |-  ( ( (,) o. G ) " ( 1 ... M ) ) C_ ran ( (,) o. G )  | 
						
						
							| 32 | 
							
								31
							 | 
							unissi | 
							 |-  U. ( ( (,) o. G ) " ( 1 ... M ) ) C_ U. ran ( (,) o. G )  | 
						
						
							| 33 | 
							
								13 32
							 | 
							eqsstri | 
							 |-  K C_ U. ran ( (,) o. G )  | 
						
						
							| 34 | 
							
								33 22
							 | 
							sstrid | 
							 |-  ( ph -> K C_ RR )  | 
						
						
							| 35 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							uniioombllem1 | 
							 |-  ( ph -> sup ( ran T , RR* , < ) e. RR )  | 
						
						
							| 36 | 
							
								
							 | 
							ssid | 
							 |-  U. ran ( (,) o. G ) C_ U. ran ( (,) o. G )  | 
						
						
							| 37 | 
							
								9
							 | 
							ovollb | 
							 |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. G ) C_ U. ran ( (,) o. G ) ) -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) )  | 
						
						
							| 38 | 
							
								7 36 37
							 | 
							sylancl | 
							 |-  ( ph -> ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) )  | 
						
						
							| 39 | 
							
								
							 | 
							ovollecl | 
							 |-  ( ( U. ran ( (,) o. G ) C_ RR /\ sup ( ran T , RR* , < ) e. RR /\ ( vol* ` U. ran ( (,) o. G ) ) <_ sup ( ran T , RR* , < ) ) -> ( vol* ` U. ran ( (,) o. G ) ) e. RR )  | 
						
						
							| 40 | 
							
								22 35 38 39
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol* ` U. ran ( (,) o. G ) ) e. RR )  | 
						
						
							| 41 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( K C_ U. ran ( (,) o. G ) /\ U. ran ( (,) o. G ) C_ RR /\ ( vol* ` U. ran ( (,) o. G ) ) e. RR ) -> ( vol* ` K ) e. RR )  | 
						
						
							| 42 | 
							
								33 22 40 41
							 | 
							mp3an2i | 
							 |-  ( ph -> ( vol* ` K ) e. RR )  | 
						
						
							| 43 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( K i^i A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i A ) ) e. RR )  | 
						
						
							| 44 | 
							
								30 34 42 43
							 | 
							mp3an2i | 
							 |-  ( ph -> ( vol* ` ( K i^i A ) ) e. RR )  | 
						
						
							| 45 | 
							
								
							 | 
							difssd | 
							 |-  ( ph -> ( K \ A ) C_ K )  | 
						
						
							| 46 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( K \ A ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K \ A ) ) e. RR )  | 
						
						
							| 47 | 
							
								45 34 42 46
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol* ` ( K \ A ) ) e. RR )  | 
						
						
							| 48 | 
							
								44 47
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) e. RR )  | 
						
						
							| 49 | 
							
								6
							 | 
							rpred | 
							 |-  ( ph -> C e. RR )  | 
						
						
							| 50 | 
							
								49 49
							 | 
							readdcld | 
							 |-  ( ph -> ( C + C ) e. RR )  | 
						
						
							| 51 | 
							
								48 50
							 | 
							readdcld | 
							 |-  ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) e. RR )  | 
						
						
							| 52 | 
							
								
							 | 
							4re | 
							 |-  4 e. RR  | 
						
						
							| 53 | 
							
								
							 | 
							remulcl | 
							 |-  ( ( 4 e. RR /\ C e. RR ) -> ( 4 x. C ) e. RR )  | 
						
						
							| 54 | 
							
								52 49 53
							 | 
							sylancr | 
							 |-  ( ph -> ( 4 x. C ) e. RR )  | 
						
						
							| 55 | 
							
								5 54
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` E ) + ( 4 x. C ) ) e. RR )  | 
						
						
							| 56 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13
							 | 
							uniioombllem3 | 
							 |-  ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) < ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) )  | 
						
						
							| 57 | 
							
								29 51 56
							 | 
							ltled | 
							 |-  ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) )  | 
						
						
							| 58 | 
							
								5 50
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` E ) + ( C + C ) ) e. RR )  | 
						
						
							| 59 | 
							
								42 49
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` K ) + C ) e. RR )  | 
						
						
							| 60 | 
							
								
							 | 
							inss1 | 
							 |-  ( K i^i L ) C_ K  | 
						
						
							| 61 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( K i^i L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K i^i L ) ) e. RR )  | 
						
						
							| 62 | 
							
								60 34 42 61
							 | 
							mp3an2i | 
							 |-  ( ph -> ( vol* ` ( K i^i L ) ) e. RR )  | 
						
						
							| 63 | 
							
								62 49
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` ( K i^i L ) ) + C ) e. RR )  | 
						
						
							| 64 | 
							
								
							 | 
							difssd | 
							 |-  ( ph -> ( K \ L ) C_ K )  | 
						
						
							| 65 | 
							
								
							 | 
							ovolsscl | 
							 |-  ( ( ( K \ L ) C_ K /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` ( K \ L ) ) e. RR )  | 
						
						
							| 66 | 
							
								64 34 42 65
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol* ` ( K \ L ) ) e. RR )  | 
						
						
							| 67 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							uniioombllem4 | 
							 |-  ( ph -> ( vol* ` ( K i^i A ) ) <_ ( ( vol* ` ( K i^i L ) ) + C ) )  | 
						
						
							| 68 | 
							
								
							 | 
							imassrn | 
							 |-  ( ( (,) o. F ) " ( 1 ... N ) ) C_ ran ( (,) o. F )  | 
						
						
							| 69 | 
							
								68
							 | 
							unissi | 
							 |-  U. ( ( (,) o. F ) " ( 1 ... N ) ) C_ U. ran ( (,) o. F )  | 
						
						
							| 70 | 
							
								69 16 4
							 | 
							3sstr4i | 
							 |-  L C_ A  | 
						
						
							| 71 | 
							
								
							 | 
							sscon | 
							 |-  ( L C_ A -> ( K \ A ) C_ ( K \ L ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							mp1i | 
							 |-  ( ph -> ( K \ A ) C_ ( K \ L ) )  | 
						
						
							| 73 | 
							
								64 34
							 | 
							sstrd | 
							 |-  ( ph -> ( K \ L ) C_ RR )  | 
						
						
							| 74 | 
							
								
							 | 
							ovolss | 
							 |-  ( ( ( K \ A ) C_ ( K \ L ) /\ ( K \ L ) C_ RR ) -> ( vol* ` ( K \ A ) ) <_ ( vol* ` ( K \ L ) ) )  | 
						
						
							| 75 | 
							
								72 73 74
							 | 
							syl2anc | 
							 |-  ( ph -> ( vol* ` ( K \ A ) ) <_ ( vol* ` ( K \ L ) ) )  | 
						
						
							| 76 | 
							
								44 47 63 66 67 75
							 | 
							le2addd | 
							 |-  ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) )  | 
						
						
							| 77 | 
							
								62
							 | 
							recnd | 
							 |-  ( ph -> ( vol* ` ( K i^i L ) ) e. CC )  | 
						
						
							| 78 | 
							
								49
							 | 
							recnd | 
							 |-  ( ph -> C e. CC )  | 
						
						
							| 79 | 
							
								66
							 | 
							recnd | 
							 |-  ( ph -> ( vol* ` ( K \ L ) ) e. CC )  | 
						
						
							| 80 | 
							
								77 78 79
							 | 
							add32d | 
							 |-  ( ph -> ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) = ( ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) + C ) )  | 
						
						
							| 81 | 
							
								
							 | 
							ioof | 
							 |-  (,) : ( RR* X. RR* ) --> ~P RR  | 
						
						
							| 82 | 
							
								
							 | 
							inss2 | 
							 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR )  | 
						
						
							| 83 | 
							
								
							 | 
							rexpssxrxp | 
							 |-  ( RR X. RR ) C_ ( RR* X. RR* )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							sstri | 
							 |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* )  | 
						
						
							| 85 | 
							
								
							 | 
							fss | 
							 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) )  | 
						
						
							| 86 | 
							
								1 84 85
							 | 
							sylancl | 
							 |-  ( ph -> F : NN --> ( RR* X. RR* ) )  | 
						
						
							| 87 | 
							
								
							 | 
							fco | 
							 |-  ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR )  | 
						
						
							| 88 | 
							
								81 86 87
							 | 
							sylancr | 
							 |-  ( ph -> ( (,) o. F ) : NN --> ~P RR )  | 
						
						
							| 89 | 
							
								
							 | 
							ffun | 
							 |-  ( ( (,) o. F ) : NN --> ~P RR -> Fun ( (,) o. F ) )  | 
						
						
							| 90 | 
							
								
							 | 
							funiunfv | 
							 |-  ( Fun ( (,) o. F ) -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) )  | 
						
						
							| 91 | 
							
								88 89 90
							 | 
							3syl | 
							 |-  ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = U. ( ( (,) o. F ) " ( 1 ... N ) ) )  | 
						
						
							| 92 | 
							
								91 16
							 | 
							eqtr4di | 
							 |-  ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) = L )  | 
						
						
							| 93 | 
							
								
							 | 
							fzfid | 
							 |-  ( ph -> ( 1 ... N ) e. Fin )  | 
						
						
							| 94 | 
							
								
							 | 
							elfznn | 
							 |-  ( n e. ( 1 ... N ) -> n e. NN )  | 
						
						
							| 95 | 
							
								
							 | 
							fvco3 | 
							 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) )  | 
						
						
							| 96 | 
							
								1 94 95
							 | 
							syl2an | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) = ( (,) ` ( F ` n ) ) )  | 
						
						
							| 97 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 98 | 
							
								1 94 97
							 | 
							syl2an | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) e. ( <_ i^i ( RR X. RR ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							elin2d | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) e. ( RR X. RR ) )  | 
						
						
							| 100 | 
							
								
							 | 
							1st2nd2 | 
							 |-  ( ( F ` n ) e. ( RR X. RR ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. )  | 
						
						
							| 101 | 
							
								99 100
							 | 
							syl | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( F ` n ) = <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. )  | 
						
						
							| 102 | 
							
								101
							 | 
							fveq2d | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( (,) ` ( F ` n ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. ) )  | 
						
						
							| 103 | 
							
								
							 | 
							df-ov | 
							 |-  ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) = ( (,) ` <. ( 1st ` ( F ` n ) ) , ( 2nd ` ( F ` n ) ) >. )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( (,) ` ( F ` n ) ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) )  | 
						
						
							| 105 | 
							
								96 104
							 | 
							eqtrd | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) = ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							ioombl | 
							 |-  ( ( 1st ` ( F ` n ) ) (,) ( 2nd ` ( F ` n ) ) ) e. dom vol  | 
						
						
							| 107 | 
							
								105 106
							 | 
							eqeltrdi | 
							 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( (,) o. F ) ` n ) e. dom vol )  | 
						
						
							| 108 | 
							
								107
							 | 
							ralrimiva | 
							 |-  ( ph -> A. n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol )  | 
						
						
							| 109 | 
							
								
							 | 
							finiunmbl | 
							 |-  ( ( ( 1 ... N ) e. Fin /\ A. n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol ) -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol )  | 
						
						
							| 110 | 
							
								93 108 109
							 | 
							syl2anc | 
							 |-  ( ph -> U_ n e. ( 1 ... N ) ( ( (,) o. F ) ` n ) e. dom vol )  | 
						
						
							| 111 | 
							
								92 110
							 | 
							eqeltrrd | 
							 |-  ( ph -> L e. dom vol )  | 
						
						
							| 112 | 
							
								
							 | 
							mblsplit | 
							 |-  ( ( L e. dom vol /\ K C_ RR /\ ( vol* ` K ) e. RR ) -> ( vol* ` K ) = ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) )  | 
						
						
							| 113 | 
							
								111 34 42 112
							 | 
							syl3anc | 
							 |-  ( ph -> ( vol* ` K ) = ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( vol* ` K ) + C ) = ( ( ( vol* ` ( K i^i L ) ) + ( vol* ` ( K \ L ) ) ) + C ) )  | 
						
						
							| 115 | 
							
								80 114
							 | 
							eqtr4d | 
							 |-  ( ph -> ( ( ( vol* ` ( K i^i L ) ) + C ) + ( vol* ` ( K \ L ) ) ) = ( ( vol* ` K ) + C ) )  | 
						
						
							| 116 | 
							
								76 115
							 | 
							breqtrd | 
							 |-  ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( vol* ` K ) + C ) )  | 
						
						
							| 117 | 
							
								5 49
							 | 
							readdcld | 
							 |-  ( ph -> ( ( vol* ` E ) + C ) e. RR )  | 
						
						
							| 118 | 
							
								9
							 | 
							ovollb | 
							 |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ K C_ U. ran ( (,) o. G ) ) -> ( vol* ` K ) <_ sup ( ran T , RR* , < ) )  | 
						
						
							| 119 | 
							
								7 33 118
							 | 
							sylancl | 
							 |-  ( ph -> ( vol* ` K ) <_ sup ( ran T , RR* , < ) )  | 
						
						
							| 120 | 
							
								42 35 117 119 10
							 | 
							letrd | 
							 |-  ( ph -> ( vol* ` K ) <_ ( ( vol* ` E ) + C ) )  | 
						
						
							| 121 | 
							
								42 117 49 120
							 | 
							leadd1dd | 
							 |-  ( ph -> ( ( vol* ` K ) + C ) <_ ( ( ( vol* ` E ) + C ) + C ) )  | 
						
						
							| 122 | 
							
								5
							 | 
							recnd | 
							 |-  ( ph -> ( vol* ` E ) e. CC )  | 
						
						
							| 123 | 
							
								122 78 78
							 | 
							addassd | 
							 |-  ( ph -> ( ( ( vol* ` E ) + C ) + C ) = ( ( vol* ` E ) + ( C + C ) ) )  | 
						
						
							| 124 | 
							
								121 123
							 | 
							breqtrd | 
							 |-  ( ph -> ( ( vol* ` K ) + C ) <_ ( ( vol* ` E ) + ( C + C ) ) )  | 
						
						
							| 125 | 
							
								48 59 58 116 124
							 | 
							letrd | 
							 |-  ( ph -> ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) <_ ( ( vol* ` E ) + ( C + C ) ) )  | 
						
						
							| 126 | 
							
								48 58 50 125
							 | 
							leadd1dd | 
							 |-  ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) <_ ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) )  | 
						
						
							| 127 | 
							
								50
							 | 
							recnd | 
							 |-  ( ph -> ( C + C ) e. CC )  | 
						
						
							| 128 | 
							
								122 127 127
							 | 
							addassd | 
							 |-  ( ph -> ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) = ( ( vol* ` E ) + ( ( C + C ) + ( C + C ) ) ) )  | 
						
						
							| 129 | 
							
								
							 | 
							2t2e4 | 
							 |-  ( 2 x. 2 ) = 4  | 
						
						
							| 130 | 
							
								129
							 | 
							oveq1i | 
							 |-  ( ( 2 x. 2 ) x. C ) = ( 4 x. C )  | 
						
						
							| 131 | 
							
								
							 | 
							2cnd | 
							 |-  ( ph -> 2 e. CC )  | 
						
						
							| 132 | 
							
								131 131 78
							 | 
							mulassd | 
							 |-  ( ph -> ( ( 2 x. 2 ) x. C ) = ( 2 x. ( 2 x. C ) ) )  | 
						
						
							| 133 | 
							
								78
							 | 
							2timesd | 
							 |-  ( ph -> ( 2 x. C ) = ( C + C ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							oveq2d | 
							 |-  ( ph -> ( 2 x. ( 2 x. C ) ) = ( 2 x. ( C + C ) ) )  | 
						
						
							| 135 | 
							
								127
							 | 
							2timesd | 
							 |-  ( ph -> ( 2 x. ( C + C ) ) = ( ( C + C ) + ( C + C ) ) )  | 
						
						
							| 136 | 
							
								132 134 135
							 | 
							3eqtrd | 
							 |-  ( ph -> ( ( 2 x. 2 ) x. C ) = ( ( C + C ) + ( C + C ) ) )  | 
						
						
							| 137 | 
							
								130 136
							 | 
							eqtr3id | 
							 |-  ( ph -> ( 4 x. C ) = ( ( C + C ) + ( C + C ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							oveq2d | 
							 |-  ( ph -> ( ( vol* ` E ) + ( 4 x. C ) ) = ( ( vol* ` E ) + ( ( C + C ) + ( C + C ) ) ) )  | 
						
						
							| 139 | 
							
								128 138
							 | 
							eqtr4d | 
							 |-  ( ph -> ( ( ( vol* ` E ) + ( C + C ) ) + ( C + C ) ) = ( ( vol* ` E ) + ( 4 x. C ) ) )  | 
						
						
							| 140 | 
							
								126 139
							 | 
							breqtrd | 
							 |-  ( ph -> ( ( ( vol* ` ( K i^i A ) ) + ( vol* ` ( K \ A ) ) ) + ( C + C ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) )  | 
						
						
							| 141 | 
							
								29 51 55 57 140
							 | 
							letrd | 
							 |-  ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) )  |