Step |
Hyp |
Ref |
Expression |
1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
4 |
|
uniioombl.a |
|- A = U. ran ( (,) o. F ) |
5 |
|
uniioombl.e |
|- ( ph -> ( vol* ` E ) e. RR ) |
6 |
|
uniioombl.c |
|- ( ph -> C e. RR+ ) |
7 |
|
uniioombl.g |
|- ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
8 |
|
uniioombl.s |
|- ( ph -> E C_ U. ran ( (,) o. G ) ) |
9 |
|
uniioombl.t |
|- T = seq 1 ( + , ( ( abs o. - ) o. G ) ) |
10 |
|
uniioombl.v |
|- ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
12 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
13 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> ( T ` m ) = ( T ` m ) ) |
14 |
|
eqidd |
|- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) = ( ( ( abs o. - ) o. G ) ` a ) ) |
15 |
|
eqid |
|- ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) |
16 |
15
|
ovolfsf |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
17 |
7 16
|
syl |
|- ( ph -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) |
18 |
17
|
ffvelrnda |
|- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) ) |
19 |
|
elrege0 |
|- ( ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) |
20 |
18 19
|
sylib |
|- ( ( ph /\ a e. NN ) -> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) |
21 |
20
|
simpld |
|- ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. RR ) |
22 |
20
|
simprd |
|- ( ( ph /\ a e. NN ) -> 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) |
23 |
1 2 3 4 5 6 7 8 9 10
|
uniioombllem1 |
|- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
24 |
15 9
|
ovolsf |
|- ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) |
25 |
7 24
|
syl |
|- ( ph -> T : NN --> ( 0 [,) +oo ) ) |
26 |
25
|
frnd |
|- ( ph -> ran T C_ ( 0 [,) +oo ) ) |
27 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
28 |
26 27
|
sstrdi |
|- ( ph -> ran T C_ RR* ) |
29 |
|
supxrub |
|- ( ( ran T C_ RR* /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) |
30 |
28 29
|
sylan |
|- ( ( ph /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) |
31 |
30
|
ralrimiva |
|- ( ph -> A. x e. ran T x <_ sup ( ran T , RR* , < ) ) |
32 |
25
|
ffnd |
|- ( ph -> T Fn NN ) |
33 |
|
breq1 |
|- ( x = ( T ` m ) -> ( x <_ sup ( ran T , RR* , < ) <-> ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
34 |
33
|
ralrn |
|- ( T Fn NN -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
35 |
32 34
|
syl |
|- ( ph -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) |
36 |
31 35
|
mpbid |
|- ( ph -> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) |
37 |
|
brralrspcev |
|- ( ( sup ( ran T , RR* , < ) e. RR /\ A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) |
38 |
23 36 37
|
syl2anc |
|- ( ph -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) |
39 |
11 9 12 14 21 22 38
|
isumsup2 |
|- ( ph -> T ~~> sup ( ran T , RR , < ) ) |
40 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
41 |
26 40
|
sstrdi |
|- ( ph -> ran T C_ RR ) |
42 |
|
1nn |
|- 1 e. NN |
43 |
25
|
fdmd |
|- ( ph -> dom T = NN ) |
44 |
42 43
|
eleqtrrid |
|- ( ph -> 1 e. dom T ) |
45 |
44
|
ne0d |
|- ( ph -> dom T =/= (/) ) |
46 |
|
dm0rn0 |
|- ( dom T = (/) <-> ran T = (/) ) |
47 |
46
|
necon3bii |
|- ( dom T =/= (/) <-> ran T =/= (/) ) |
48 |
45 47
|
sylib |
|- ( ph -> ran T =/= (/) ) |
49 |
|
brralrspcev |
|- ( ( sup ( ran T , RR* , < ) e. RR /\ A. x e. ran T x <_ sup ( ran T , RR* , < ) ) -> E. y e. RR A. x e. ran T x <_ y ) |
50 |
23 31 49
|
syl2anc |
|- ( ph -> E. y e. RR A. x e. ran T x <_ y ) |
51 |
|
supxrre |
|- ( ( ran T C_ RR /\ ran T =/= (/) /\ E. y e. RR A. x e. ran T x <_ y ) -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
52 |
41 48 50 51
|
syl3anc |
|- ( ph -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
53 |
39 52
|
breqtrrd |
|- ( ph -> T ~~> sup ( ran T , RR* , < ) ) |
54 |
11 12 6 13 53
|
climi2 |
|- ( ph -> E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
55 |
11
|
r19.2uz |
|- ( E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
56 |
54 55
|
syl |
|- ( ph -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
57 |
|
1zzd |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> 1 e. ZZ ) |
58 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> C e. RR+ ) |
59 |
|
simplrl |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. NN ) |
60 |
59
|
nnrpd |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. RR+ ) |
61 |
58 60
|
rpdivcld |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( C / m ) e. RR+ ) |
62 |
|
fvex |
|- ( (,) ` ( F ` z ) ) e. _V |
63 |
62
|
inex1 |
|- ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
64 |
63
|
rgenw |
|- A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
65 |
|
eqid |
|- ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
66 |
65
|
fnmpt |
|- ( A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) |
67 |
64 66
|
mp1i |
|- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) |
68 |
|
elfznn |
|- ( i e. ( 1 ... n ) -> i e. NN ) |
69 |
|
fvco2 |
|- ( ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN /\ i e. NN ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) |
70 |
67 68 69
|
syl2an |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) |
71 |
68
|
adantl |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> i e. NN ) |
72 |
|
2fveq3 |
|- ( z = i -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` i ) ) ) |
73 |
72
|
ineq1d |
|- ( z = i -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
74 |
|
fvex |
|- ( (,) ` ( F ` i ) ) e. _V |
75 |
74
|
inex1 |
|- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V |
76 |
73 65 75
|
fvmpt |
|- ( i e. NN -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
77 |
71 76
|
syl |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
78 |
77
|
fveq2d |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
79 |
70 78
|
eqtrd |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
80 |
|
simpr |
|- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. NN ) |
81 |
80 11
|
eleqtrdi |
|- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
82 |
|
inss2 |
|- ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) |
83 |
7
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
84 |
|
elfznn |
|- ( j e. ( 1 ... m ) -> j e. NN ) |
85 |
|
ffvelrn |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
86 |
83 84 85
|
syl2an |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) |
87 |
86
|
elin2d |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( RR X. RR ) ) |
88 |
|
1st2nd2 |
|- ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
89 |
87 88
|
syl |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
90 |
89
|
fveq2d |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) |
91 |
|
df-ov |
|- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) |
92 |
90 91
|
eqtr4di |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) |
93 |
|
ioossre |
|- ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR |
94 |
92 93
|
eqsstrdi |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
95 |
94
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) |
96 |
92
|
fveq2d |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) |
97 |
|
ovolfcl |
|- ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
98 |
83 84 97
|
syl2an |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) |
99 |
|
ovolioo |
|- ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
100 |
98 99
|
syl |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
101 |
96 100
|
eqtrd |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) |
102 |
98
|
simp2d |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) |
103 |
98
|
simp1d |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 1st ` ( G ` j ) ) e. RR ) |
104 |
102 103
|
resubcld |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) |
105 |
101 104
|
eqeltrd |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
106 |
105
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) |
107 |
|
ovolsscl |
|- ( ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
108 |
82 95 106 107
|
mp3an2i |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) |
109 |
108
|
recnd |
|- ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. CC ) |
110 |
79 81 109
|
fsumser |
|- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) ) |
111 |
110
|
eqcomd |
|- ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) = sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
112 |
|
2fveq3 |
|- ( z = k -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` k ) ) ) |
113 |
112
|
ineq1d |
|- ( z = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
114 |
113
|
cbvmptv |
|- ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( k e. NN |-> ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
115 |
|
eqeq1 |
|- ( z = x -> ( z = (/) <-> x = (/) ) ) |
116 |
|
infeq1 |
|- ( z = x -> inf ( z , RR* , < ) = inf ( x , RR* , < ) ) |
117 |
|
supeq1 |
|- ( z = x -> sup ( z , RR* , < ) = sup ( x , RR* , < ) ) |
118 |
116 117
|
opeq12d |
|- ( z = x -> <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. = <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) |
119 |
115 118
|
ifbieq2d |
|- ( z = x -> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) = if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
120 |
119
|
cbvmptv |
|- ( z e. ran (,) |-> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) ) = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
121 |
1 2 3 4 5 6 7 8 9 10 114 120
|
uniioombllem2 |
|- ( ( ph /\ j e. NN ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
122 |
84 121
|
sylan2 |
|- ( ( ph /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
123 |
122
|
adantlr |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) |
124 |
11 57 61 111 123
|
climi2 |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
125 |
|
1z |
|- 1 e. ZZ |
126 |
11
|
rexuz3 |
|- ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
127 |
125 126
|
ax-mp |
|- ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
128 |
124 127
|
sylib |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
129 |
128
|
ralrimiva |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
130 |
|
fzfi |
|- ( 1 ... m ) e. Fin |
131 |
|
rexfiuz |
|- ( ( 1 ... m ) e. Fin -> ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
132 |
130 131
|
ax-mp |
|- ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
133 |
129 132
|
sylibr |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
134 |
11
|
rexuz3 |
|- ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
135 |
125 134
|
ax-mp |
|- ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
136 |
133 135
|
sylibr |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
137 |
11
|
r19.2uz |
|- ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
138 |
136 137
|
syl |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
139 |
1
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
140 |
2
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
141 |
5
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( vol* ` E ) e. RR ) |
142 |
6
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> C e. RR+ ) |
143 |
7
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) |
144 |
8
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> E C_ U. ran ( (,) o. G ) ) |
145 |
10
|
adantr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) |
146 |
|
simprll |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> m e. NN ) |
147 |
|
simprlr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) |
148 |
|
eqid |
|- U. ( ( (,) o. G ) " ( 1 ... m ) ) = U. ( ( (,) o. G ) " ( 1 ... m ) ) |
149 |
|
simprrl |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> n e. NN ) |
150 |
|
simprrr |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) |
151 |
|
2fveq3 |
|- ( i = z -> ( (,) ` ( F ` i ) ) = ( (,) ` ( F ` z ) ) ) |
152 |
151
|
ineq1d |
|- ( i = z -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
153 |
152
|
fveq2d |
|- ( i = z -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) |
154 |
153
|
cbvsumv |
|- sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) |
155 |
|
2fveq3 |
|- ( j = k -> ( (,) ` ( G ` j ) ) = ( (,) ` ( G ` k ) ) ) |
156 |
155
|
ineq2d |
|- ( j = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) |
157 |
156
|
fveq2d |
|- ( j = k -> ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
158 |
157
|
sumeq2sdv |
|- ( j = k -> sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
159 |
154 158
|
syl5eq |
|- ( j = k -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) |
160 |
155
|
ineq1d |
|- ( j = k -> ( ( (,) ` ( G ` j ) ) i^i A ) = ( ( (,) ` ( G ` k ) ) i^i A ) ) |
161 |
160
|
fveq2d |
|- ( j = k -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) |
162 |
159 161
|
oveq12d |
|- ( j = k -> ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) = ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) |
163 |
162
|
fveq2d |
|- ( j = k -> ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) = ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) ) |
164 |
163
|
breq1d |
|- ( j = k -> ( ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) ) |
165 |
164
|
cbvralvw |
|- ( A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) |
166 |
150 165
|
sylib |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) |
167 |
|
eqid |
|- U. ( ( (,) o. F ) " ( 1 ... n ) ) = U. ( ( (,) o. F ) " ( 1 ... n ) ) |
168 |
139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167
|
uniioombllem5 |
|- ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
169 |
168
|
anassrs |
|- ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
170 |
138 169
|
rexlimddv |
|- ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |
171 |
56 170
|
rexlimddv |
|- ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |