| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniioombl.1 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 2 |  | uniioombl.2 |  |-  ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) | 
						
							| 3 |  | uniioombl.3 |  |-  S = seq 1 ( + , ( ( abs o. - ) o. F ) ) | 
						
							| 4 |  | uniioombl.a |  |-  A = U. ran ( (,) o. F ) | 
						
							| 5 |  | uniioombl.e |  |-  ( ph -> ( vol* ` E ) e. RR ) | 
						
							| 6 |  | uniioombl.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 7 |  | uniioombl.g |  |-  ( ph -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 8 |  | uniioombl.s |  |-  ( ph -> E C_ U. ran ( (,) o. G ) ) | 
						
							| 9 |  | uniioombl.t |  |-  T = seq 1 ( + , ( ( abs o. - ) o. G ) ) | 
						
							| 10 |  | uniioombl.v |  |-  ( ph -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) | 
						
							| 11 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 12 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 13 |  | eqidd |  |-  ( ( ph /\ m e. NN ) -> ( T ` m ) = ( T ` m ) ) | 
						
							| 14 |  | eqidd |  |-  ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) = ( ( ( abs o. - ) o. G ) ` a ) ) | 
						
							| 15 |  | eqid |  |-  ( ( abs o. - ) o. G ) = ( ( abs o. - ) o. G ) | 
						
							| 16 | 15 | ovolfsf |  |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 17 | 7 16 | syl |  |-  ( ph -> ( ( abs o. - ) o. G ) : NN --> ( 0 [,) +oo ) ) | 
						
							| 18 | 17 | ffvelcdmda |  |-  ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) ) | 
						
							| 19 |  | elrege0 |  |-  ( ( ( ( abs o. - ) o. G ) ` a ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) | 
						
							| 20 | 18 19 | sylib |  |-  ( ( ph /\ a e. NN ) -> ( ( ( ( abs o. - ) o. G ) ` a ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( ph /\ a e. NN ) -> ( ( ( abs o. - ) o. G ) ` a ) e. RR ) | 
						
							| 22 | 20 | simprd |  |-  ( ( ph /\ a e. NN ) -> 0 <_ ( ( ( abs o. - ) o. G ) ` a ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 |  |-  ( ph -> sup ( ran T , RR* , < ) e. RR ) | 
						
							| 24 | 15 9 | ovolsf |  |-  ( G : NN --> ( <_ i^i ( RR X. RR ) ) -> T : NN --> ( 0 [,) +oo ) ) | 
						
							| 25 | 7 24 | syl |  |-  ( ph -> T : NN --> ( 0 [,) +oo ) ) | 
						
							| 26 | 25 | frnd |  |-  ( ph -> ran T C_ ( 0 [,) +oo ) ) | 
						
							| 27 |  | icossxr |  |-  ( 0 [,) +oo ) C_ RR* | 
						
							| 28 | 26 27 | sstrdi |  |-  ( ph -> ran T C_ RR* ) | 
						
							| 29 |  | supxrub |  |-  ( ( ran T C_ RR* /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) | 
						
							| 30 | 28 29 | sylan |  |-  ( ( ph /\ x e. ran T ) -> x <_ sup ( ran T , RR* , < ) ) | 
						
							| 31 | 30 | ralrimiva |  |-  ( ph -> A. x e. ran T x <_ sup ( ran T , RR* , < ) ) | 
						
							| 32 | 25 | ffnd |  |-  ( ph -> T Fn NN ) | 
						
							| 33 |  | breq1 |  |-  ( x = ( T ` m ) -> ( x <_ sup ( ran T , RR* , < ) <-> ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) | 
						
							| 34 | 33 | ralrn |  |-  ( T Fn NN -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) | 
						
							| 35 | 32 34 | syl |  |-  ( ph -> ( A. x e. ran T x <_ sup ( ran T , RR* , < ) <-> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) ) | 
						
							| 36 | 31 35 | mpbid |  |-  ( ph -> A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) | 
						
							| 37 |  | brralrspcev |  |-  ( ( sup ( ran T , RR* , < ) e. RR /\ A. m e. NN ( T ` m ) <_ sup ( ran T , RR* , < ) ) -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) | 
						
							| 38 | 23 36 37 | syl2anc |  |-  ( ph -> E. x e. RR A. m e. NN ( T ` m ) <_ x ) | 
						
							| 39 | 11 9 12 14 21 22 38 | isumsup2 |  |-  ( ph -> T ~~> sup ( ran T , RR , < ) ) | 
						
							| 40 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 41 | 26 40 | sstrdi |  |-  ( ph -> ran T C_ RR ) | 
						
							| 42 |  | 1nn |  |-  1 e. NN | 
						
							| 43 | 25 | fdmd |  |-  ( ph -> dom T = NN ) | 
						
							| 44 | 42 43 | eleqtrrid |  |-  ( ph -> 1 e. dom T ) | 
						
							| 45 | 44 | ne0d |  |-  ( ph -> dom T =/= (/) ) | 
						
							| 46 |  | dm0rn0 |  |-  ( dom T = (/) <-> ran T = (/) ) | 
						
							| 47 | 46 | necon3bii |  |-  ( dom T =/= (/) <-> ran T =/= (/) ) | 
						
							| 48 | 45 47 | sylib |  |-  ( ph -> ran T =/= (/) ) | 
						
							| 49 |  | brralrspcev |  |-  ( ( sup ( ran T , RR* , < ) e. RR /\ A. x e. ran T x <_ sup ( ran T , RR* , < ) ) -> E. y e. RR A. x e. ran T x <_ y ) | 
						
							| 50 | 23 31 49 | syl2anc |  |-  ( ph -> E. y e. RR A. x e. ran T x <_ y ) | 
						
							| 51 |  | supxrre |  |-  ( ( ran T C_ RR /\ ran T =/= (/) /\ E. y e. RR A. x e. ran T x <_ y ) -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) | 
						
							| 52 | 41 48 50 51 | syl3anc |  |-  ( ph -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) | 
						
							| 53 | 39 52 | breqtrrd |  |-  ( ph -> T ~~> sup ( ran T , RR* , < ) ) | 
						
							| 54 | 11 12 6 13 53 | climi2 |  |-  ( ph -> E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) | 
						
							| 55 | 11 | r19.2uz |  |-  ( E. j e. NN A. m e. ( ZZ>= ` j ) ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) | 
						
							| 56 | 54 55 | syl |  |-  ( ph -> E. m e. NN ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) | 
						
							| 57 |  | 1zzd |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> 1 e. ZZ ) | 
						
							| 58 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> C e. RR+ ) | 
						
							| 59 |  | simplrl |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. NN ) | 
						
							| 60 | 59 | nnrpd |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> m e. RR+ ) | 
						
							| 61 | 58 60 | rpdivcld |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( C / m ) e. RR+ ) | 
						
							| 62 |  | fvex |  |-  ( (,) ` ( F ` z ) ) e. _V | 
						
							| 63 | 62 | inex1 |  |-  ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V | 
						
							| 64 | 63 | rgenw |  |-  A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V | 
						
							| 65 |  | eqid |  |-  ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 66 | 65 | fnmpt |  |-  ( A. z e. NN ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) | 
						
							| 67 | 64 66 | mp1i |  |-  ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN ) | 
						
							| 68 |  | elfznn |  |-  ( i e. ( 1 ... n ) -> i e. NN ) | 
						
							| 69 |  | fvco2 |  |-  ( ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) Fn NN /\ i e. NN ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) | 
						
							| 70 | 67 68 69 | syl2an |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) ) | 
						
							| 71 | 68 | adantl |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> i e. NN ) | 
						
							| 72 |  | 2fveq3 |  |-  ( z = i -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` i ) ) ) | 
						
							| 73 | 72 | ineq1d |  |-  ( z = i -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 74 |  | fvex |  |-  ( (,) ` ( F ` i ) ) e. _V | 
						
							| 75 | 74 | inex1 |  |-  ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) e. _V | 
						
							| 76 | 73 65 75 | fvmpt |  |-  ( i e. NN -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 77 | 71 76 | syl |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) = ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 78 | 77 | fveq2d |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ` i ) ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) | 
						
							| 79 | 70 78 | eqtrd |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ` i ) = ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) | 
						
							| 80 |  | simpr |  |-  ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. NN ) | 
						
							| 81 | 80 11 | eleqtrdi |  |-  ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 82 |  | inss2 |  |-  ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) | 
						
							| 83 | 7 | adantr |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 84 |  | elfznn |  |-  ( j e. ( 1 ... m ) -> j e. NN ) | 
						
							| 85 |  | ffvelcdm |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 86 | 83 84 85 | syl2an |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 87 | 86 | elin2d |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) e. ( RR X. RR ) ) | 
						
							| 88 |  | 1st2nd2 |  |-  ( ( G ` j ) e. ( RR X. RR ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) | 
						
							| 89 | 87 88 | syl |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( G ` j ) = <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) | 
						
							| 90 | 89 | fveq2d |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) ) | 
						
							| 91 |  | df-ov |  |-  ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) = ( (,) ` <. ( 1st ` ( G ` j ) ) , ( 2nd ` ( G ` j ) ) >. ) | 
						
							| 92 | 90 91 | eqtr4di |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) = ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) | 
						
							| 93 |  | ioossre |  |-  ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) C_ RR | 
						
							| 94 | 92 93 | eqsstrdi |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) | 
						
							| 95 | 94 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( (,) ` ( G ` j ) ) C_ RR ) | 
						
							| 96 | 92 | fveq2d |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) ) | 
						
							| 97 |  | ovolfcl |  |-  ( ( G : NN --> ( <_ i^i ( RR X. RR ) ) /\ j e. NN ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) | 
						
							| 98 | 83 84 97 | syl2an |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) ) | 
						
							| 99 |  | ovolioo |  |-  ( ( ( 1st ` ( G ` j ) ) e. RR /\ ( 2nd ` ( G ` j ) ) e. RR /\ ( 1st ` ( G ` j ) ) <_ ( 2nd ` ( G ` j ) ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( ( 1st ` ( G ` j ) ) (,) ( 2nd ` ( G ` j ) ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) | 
						
							| 101 | 96 100 | eqtrd |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) = ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) ) | 
						
							| 102 | 98 | simp2d |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 2nd ` ( G ` j ) ) e. RR ) | 
						
							| 103 | 98 | simp1d |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( 1st ` ( G ` j ) ) e. RR ) | 
						
							| 104 | 102 103 | resubcld |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( ( 2nd ` ( G ` j ) ) - ( 1st ` ( G ` j ) ) ) e. RR ) | 
						
							| 105 | 101 104 | eqeltrd |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) | 
						
							| 106 | 105 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) | 
						
							| 107 |  | ovolsscl |  |-  ( ( ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) C_ ( (,) ` ( G ` j ) ) /\ ( (,) ` ( G ` j ) ) C_ RR /\ ( vol* ` ( (,) ` ( G ` j ) ) ) e. RR ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) | 
						
							| 108 | 82 95 106 107 | mp3an2i |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. RR ) | 
						
							| 109 | 108 | recnd |  |-  ( ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) /\ i e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) e. CC ) | 
						
							| 110 | 79 81 109 | fsumser |  |-  ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) ) | 
						
							| 111 | 110 | eqcomd |  |-  ( ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) /\ n e. NN ) -> ( seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ` n ) = sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) | 
						
							| 112 |  | 2fveq3 |  |-  ( z = k -> ( (,) ` ( F ` z ) ) = ( (,) ` ( F ` k ) ) ) | 
						
							| 113 | 112 | ineq1d |  |-  ( z = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 114 | 113 | cbvmptv |  |-  ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( k e. NN |-> ( ( (,) ` ( F ` k ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 115 |  | eqeq1 |  |-  ( z = x -> ( z = (/) <-> x = (/) ) ) | 
						
							| 116 |  | infeq1 |  |-  ( z = x -> inf ( z , RR* , < ) = inf ( x , RR* , < ) ) | 
						
							| 117 |  | supeq1 |  |-  ( z = x -> sup ( z , RR* , < ) = sup ( x , RR* , < ) ) | 
						
							| 118 | 116 117 | opeq12d |  |-  ( z = x -> <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. = <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) | 
						
							| 119 | 115 118 | ifbieq2d |  |-  ( z = x -> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) = if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) | 
						
							| 120 | 119 | cbvmptv |  |-  ( z e. ran (,) |-> if ( z = (/) , <. 0 , 0 >. , <. inf ( z , RR* , < ) , sup ( z , RR* , < ) >. ) ) = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) | 
						
							| 121 | 1 2 3 4 5 6 7 8 9 10 114 120 | uniioombllem2 |  |-  ( ( ph /\ j e. NN ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) | 
						
							| 122 | 84 121 | sylan2 |  |-  ( ( ph /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) | 
						
							| 123 | 122 | adantlr |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> seq 1 ( + , ( vol* o. ( z e. NN |-> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) ) ~~> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) | 
						
							| 124 | 11 57 61 111 123 | climi2 |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 125 |  | 1z |  |-  1 e. ZZ | 
						
							| 126 | 11 | rexuz3 |  |-  ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) | 
						
							| 127 | 125 126 | ax-mp |  |-  ( E. a e. NN A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 128 | 124 127 | sylib |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ j e. ( 1 ... m ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 129 | 128 | ralrimiva |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 130 |  | fzfi |  |-  ( 1 ... m ) e. Fin | 
						
							| 131 |  | rexfiuz |  |-  ( ( 1 ... m ) e. Fin -> ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) | 
						
							| 132 | 130 131 | ax-mp |  |-  ( E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. j e. ( 1 ... m ) E. a e. ZZ A. n e. ( ZZ>= ` a ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 133 | 129 132 | sylibr |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 134 | 11 | rexuz3 |  |-  ( 1 e. ZZ -> ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) | 
						
							| 135 | 125 134 | ax-mp |  |-  ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> E. a e. ZZ A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 136 | 133 135 | sylibr |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 137 | 11 | r19.2uz |  |-  ( E. a e. NN A. n e. ( ZZ>= ` a ) A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 138 | 136 137 | syl |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> E. n e. NN A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 139 | 1 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 140 | 2 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) | 
						
							| 141 | 5 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( vol* ` E ) e. RR ) | 
						
							| 142 | 6 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> C e. RR+ ) | 
						
							| 143 | 7 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> G : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 144 | 8 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> E C_ U. ran ( (,) o. G ) ) | 
						
							| 145 | 10 | adantr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> sup ( ran T , RR* , < ) <_ ( ( vol* ` E ) + C ) ) | 
						
							| 146 |  | simprll |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> m e. NN ) | 
						
							| 147 |  | simprlr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) | 
						
							| 148 |  | eqid |  |-  U. ( ( (,) o. G ) " ( 1 ... m ) ) = U. ( ( (,) o. G ) " ( 1 ... m ) ) | 
						
							| 149 |  | simprrl |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> n e. NN ) | 
						
							| 150 |  | simprrr |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 151 |  | 2fveq3 |  |-  ( i = z -> ( (,) ` ( F ` i ) ) = ( (,) ` ( F ` z ) ) ) | 
						
							| 152 | 151 | ineq1d |  |-  ( i = z -> ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 153 | 152 | fveq2d |  |-  ( i = z -> ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) ) | 
						
							| 154 | 153 | cbvsumv |  |-  sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) | 
						
							| 155 |  | 2fveq3 |  |-  ( j = k -> ( (,) ` ( G ` j ) ) = ( (,) ` ( G ` k ) ) ) | 
						
							| 156 | 155 | ineq2d |  |-  ( j = k -> ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) = ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) | 
						
							| 157 | 156 | fveq2d |  |-  ( j = k -> ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) | 
						
							| 158 | 157 | sumeq2sdv |  |-  ( j = k -> sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) | 
						
							| 159 | 154 158 | eqtrid |  |-  ( j = k -> sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) = sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) ) | 
						
							| 160 | 155 | ineq1d |  |-  ( j = k -> ( ( (,) ` ( G ` j ) ) i^i A ) = ( ( (,) ` ( G ` k ) ) i^i A ) ) | 
						
							| 161 | 160 | fveq2d |  |-  ( j = k -> ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) = ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) | 
						
							| 162 | 159 161 | oveq12d |  |-  ( j = k -> ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) = ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) | 
						
							| 163 | 162 | fveq2d |  |-  ( j = k -> ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) = ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) ) | 
						
							| 164 | 163 | breq1d |  |-  ( j = k -> ( ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) ) | 
						
							| 165 | 164 | cbvralvw |  |-  ( A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) <-> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 166 | 150 165 | sylib |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> A. k e. ( 1 ... m ) ( abs ` ( sum_ z e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` z ) ) i^i ( (,) ` ( G ` k ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` k ) ) i^i A ) ) ) ) < ( C / m ) ) | 
						
							| 167 |  | eqid |  |-  U. ( ( (,) o. F ) " ( 1 ... n ) ) = U. ( ( (,) o. F ) " ( 1 ... n ) ) | 
						
							| 168 | 139 140 3 4 141 142 143 144 9 145 146 147 148 149 166 167 | uniioombllem5 |  |-  ( ( ph /\ ( ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) | 
						
							| 169 | 168 | anassrs |  |-  ( ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) /\ ( n e. NN /\ A. j e. ( 1 ... m ) ( abs ` ( sum_ i e. ( 1 ... n ) ( vol* ` ( ( (,) ` ( F ` i ) ) i^i ( (,) ` ( G ` j ) ) ) ) - ( vol* ` ( ( (,) ` ( G ` j ) ) i^i A ) ) ) ) < ( C / m ) ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) | 
						
							| 170 | 138 169 | rexlimddv |  |-  ( ( ph /\ ( m e. NN /\ ( abs ` ( ( T ` m ) - sup ( ran T , RR* , < ) ) ) < C ) ) -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) | 
						
							| 171 | 56 170 | rexlimddv |  |-  ( ph -> ( ( vol* ` ( E i^i A ) ) + ( vol* ` ( E \ A ) ) ) <_ ( ( vol* ` E ) + ( 4 x. C ) ) ) |