| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniioombl.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 2 |
|
uniioombl.2 |
|- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
| 3 |
|
uniioombl.3 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
| 4 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 5 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
| 6 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 7 |
5 6
|
sstri |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
| 9 |
1 7 8
|
sylancl |
|- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 10 |
|
fco |
|- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 11 |
4 9 10
|
sylancr |
|- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 12 |
11
|
frnd |
|- ( ph -> ran ( (,) o. F ) C_ ~P RR ) |
| 13 |
|
sspwuni |
|- ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) |
| 14 |
12 13
|
sylib |
|- ( ph -> U. ran ( (,) o. F ) C_ RR ) |
| 15 |
|
ovolcl |
|- ( U. ran ( (,) o. F ) C_ RR -> ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) |
| 17 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
| 18 |
17 3
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 19 |
|
frn |
|- ( S : NN --> ( 0 [,) +oo ) -> ran S C_ ( 0 [,) +oo ) ) |
| 20 |
1 18 19
|
3syl |
|- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 21 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 22 |
20 21
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
| 23 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
| 24 |
22 23
|
syl |
|- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 25 |
|
ssid |
|- U. ran ( (,) o. F ) C_ U. ran ( (,) o. F ) |
| 26 |
3
|
ovollb |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. F ) C_ U. ran ( (,) o. F ) ) -> ( vol* ` U. ran ( (,) o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 27 |
1 25 26
|
sylancl |
|- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 28 |
3
|
fveq1i |
|- ( S ` n ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` n ) |
| 29 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 30 |
|
elfznn |
|- ( x e. ( 1 ... n ) -> x e. NN ) |
| 31 |
17
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 32 |
29 30 31
|
syl2an |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 33 |
|
fvco3 |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
| 34 |
29 30 33
|
syl2an |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
| 35 |
|
ffvelcdm |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 36 |
29 30 35
|
syl2an |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 37 |
36
|
elin2d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) e. ( RR X. RR ) ) |
| 38 |
|
1st2nd2 |
|- ( ( F ` x ) e. ( RR X. RR ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 39 |
37 38
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 40 |
39
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( (,) ` ( F ` x ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
| 41 |
|
df-ov |
|- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 42 |
40 41
|
eqtr4di |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( (,) ` ( F ` x ) ) = ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) |
| 43 |
34 42
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) = ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) |
| 44 |
|
ioombl |
|- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) e. dom vol |
| 45 |
43 44
|
eqeltrdi |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) e. dom vol ) |
| 46 |
|
mblvol |
|- ( ( ( (,) o. F ) ` x ) e. dom vol -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( (,) o. F ) ` x ) ) ) |
| 47 |
45 46
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( (,) o. F ) ` x ) ) ) |
| 48 |
43
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) |
| 49 |
|
ovolfcl |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
| 50 |
29 30 49
|
syl2an |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
| 51 |
|
ovolioo |
|- ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) -> ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 52 |
50 51
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 53 |
47 48 52
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 54 |
32 53
|
eqtr4d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 55 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
| 56 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 57 |
55 56
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 58 |
50
|
simp2d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( 2nd ` ( F ` x ) ) e. RR ) |
| 59 |
50
|
simp1d |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( 1st ` ( F ` x ) ) e. RR ) |
| 60 |
58 59
|
resubcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) e. RR ) |
| 61 |
53 60
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) |
| 62 |
61
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) e. CC ) |
| 63 |
54 57 62
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` n ) ) |
| 64 |
28 63
|
eqtr4id |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 65 |
|
fzfid |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
| 66 |
45 61
|
jca |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) ) |
| 67 |
66
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. x e. ( 1 ... n ) ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) ) |
| 68 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
| 69 |
1 33
|
sylan |
|- ( ( ph /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
| 70 |
69
|
disjeq2dv |
|- ( ph -> ( Disj_ x e. NN ( ( (,) o. F ) ` x ) <-> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) ) |
| 71 |
2 70
|
mpbird |
|- ( ph -> Disj_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ n e. NN ) -> Disj_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 73 |
|
disjss1 |
|- ( ( 1 ... n ) C_ NN -> ( Disj_ x e. NN ( ( (,) o. F ) ` x ) -> Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 74 |
68 72 73
|
mpsyl |
|- ( ( ph /\ n e. NN ) -> Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) |
| 75 |
|
volfiniun |
|- ( ( ( 1 ... n ) e. Fin /\ A. x e. ( 1 ... n ) ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) /\ Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 76 |
65 67 74 75
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 77 |
45
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
| 78 |
|
finiunmbl |
|- ( ( ( 1 ... n ) e. Fin /\ A. x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
| 79 |
65 77 78
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
| 80 |
|
mblvol |
|- ( U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 81 |
79 80
|
syl |
|- ( ( ph /\ n e. NN ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 82 |
64 76 81
|
3eqtr2d |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 83 |
|
iunss1 |
|- ( ( 1 ... n ) C_ NN -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 84 |
68 83
|
mp1i |
|- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 85 |
11
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 86 |
|
ffn |
|- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
| 87 |
|
fniunfv |
|- ( ( (,) o. F ) Fn NN -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
| 88 |
85 86 87
|
3syl |
|- ( ( ph /\ n e. NN ) -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
| 89 |
84 88
|
sseqtrd |
|- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U. ran ( (,) o. F ) ) |
| 90 |
14
|
adantr |
|- ( ( ph /\ n e. NN ) -> U. ran ( (,) o. F ) C_ RR ) |
| 91 |
|
ovolss |
|- ( ( U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U. ran ( (,) o. F ) /\ U. ran ( (,) o. F ) C_ RR ) -> ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 92 |
89 90 91
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 93 |
82 92
|
eqbrtrd |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 94 |
93
|
ralrimiva |
|- ( ph -> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 95 |
1 18
|
syl |
|- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 96 |
|
ffn |
|- ( S : NN --> ( 0 [,) +oo ) -> S Fn NN ) |
| 97 |
|
breq1 |
|- ( y = ( S ` n ) -> ( y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 98 |
97
|
ralrn |
|- ( S Fn NN -> ( A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 99 |
95 96 98
|
3syl |
|- ( ph -> ( A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 100 |
94 99
|
mpbird |
|- ( ph -> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 101 |
|
supxrleub |
|- ( ( ran S C_ RR* /\ ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 102 |
22 16 101
|
syl2anc |
|- ( ph -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 103 |
100 102
|
mpbird |
|- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 104 |
16 24 27 103
|
xrletrid |
|- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) ) |