Description: Superclass of the greatest lower bound. A dual statement of ssintub . (Contributed by Zhi Wang, 29-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | unilbss | |- U. { x e. B | x C_ A } C_ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb | |- ( U. { x e. B | x C_ A } C_ A <-> A. y e. { x e. B | x C_ A } y C_ A ) |
|
2 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
3 | 2 | elrab | |- ( y e. { x e. B | x C_ A } <-> ( y e. B /\ y C_ A ) ) |
4 | 3 | simprbi | |- ( y e. { x e. B | x C_ A } -> y C_ A ) |
5 | 1 4 | mprgbir | |- U. { x e. B | x C_ A } C_ A |