Metamath Proof Explorer


Theorem uniop

Description: The union of an ordered pair. Theorem 65 of Suppes p. 39. (Contributed by NM, 17-Aug-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1
|- A e. _V
opthw.2
|- B e. _V
Assertion uniop
|- U. <. A , B >. = { A , B }

Proof

Step Hyp Ref Expression
1 opthw.1
 |-  A e. _V
2 opthw.2
 |-  B e. _V
3 1 2 dfop
 |-  <. A , B >. = { { A } , { A , B } }
4 3 unieqi
 |-  U. <. A , B >. = U. { { A } , { A , B } }
5 snex
 |-  { A } e. _V
6 prex
 |-  { A , B } e. _V
7 5 6 unipr
 |-  U. { { A } , { A , B } } = ( { A } u. { A , B } )
8 snsspr1
 |-  { A } C_ { A , B }
9 ssequn1
 |-  ( { A } C_ { A , B } <-> ( { A } u. { A , B } ) = { A , B } )
10 8 9 mpbi
 |-  ( { A } u. { A , B } ) = { A , B }
11 4 7 10 3eqtri
 |-  U. <. A , B >. = { A , B }