Description: The union of an ordered pair. Theorem 65 of Suppes p. 39. (Contributed by NM, 17-Aug-2004) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthw.1 | |- A e. _V |
|
opthw.2 | |- B e. _V |
||
Assertion | uniop | |- U. <. A , B >. = { A , B } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | |- A e. _V |
|
2 | opthw.2 | |- B e. _V |
|
3 | 1 2 | dfop | |- <. A , B >. = { { A } , { A , B } } |
4 | 3 | unieqi | |- U. <. A , B >. = U. { { A } , { A , B } } |
5 | snex | |- { A } e. _V |
|
6 | prex | |- { A , B } e. _V |
|
7 | 5 6 | unipr | |- U. { { A } , { A , B } } = ( { A } u. { A , B } ) |
8 | snsspr1 | |- { A } C_ { A , B } |
|
9 | ssequn1 | |- ( { A } C_ { A , B } <-> ( { A } u. { A , B } ) = { A , B } ) |
|
10 | 8 9 | mpbi | |- ( { A } u. { A , B } ) = { A , B } |
11 | 4 7 10 | 3eqtri | |- U. <. A , B >. = { A , B } |