Metamath Proof Explorer


Theorem uniopel

Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1
|- A e. _V
opthw.2
|- B e. _V
Assertion uniopel
|- ( <. A , B >. e. C -> U. <. A , B >. e. U. C )

Proof

Step Hyp Ref Expression
1 opthw.1
 |-  A e. _V
2 opthw.2
 |-  B e. _V
3 1 2 uniop
 |-  U. <. A , B >. = { A , B }
4 1 2 opi2
 |-  { A , B } e. <. A , B >.
5 3 4 eqeltri
 |-  U. <. A , B >. e. <. A , B >.
6 elssuni
 |-  ( <. A , B >. e. C -> <. A , B >. C_ U. C )
7 6 sseld
 |-  ( <. A , B >. e. C -> ( U. <. A , B >. e. <. A , B >. -> U. <. A , B >. e. U. C ) )
8 5 7 mpi
 |-  ( <. A , B >. e. C -> U. <. A , B >. e. U. C )