Description: The union of a set of ordinals is equal to the intersection of its upper bounds. Problem 2.5(ii) of BellMachover p. 471. (Contributed by NM, 20-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uniordint.1 | |- A e. _V |
|
| Assertion | uniordint | |- ( A C_ On -> U. A = |^| { x e. On | A. y e. A y C_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniordint.1 | |- A e. _V |
|
| 2 | 1 | ssonunii | |- ( A C_ On -> U. A e. On ) |
| 3 | intmin | |- ( U. A e. On -> |^| { x e. On | U. A C_ x } = U. A ) |
|
| 4 | unissb | |- ( U. A C_ x <-> A. y e. A y C_ x ) |
|
| 5 | 4 | rabbii | |- { x e. On | U. A C_ x } = { x e. On | A. y e. A y C_ x } |
| 6 | 5 | inteqi | |- |^| { x e. On | U. A C_ x } = |^| { x e. On | A. y e. A y C_ x } |
| 7 | 3 6 | eqtr3di | |- ( U. A e. On -> U. A = |^| { x e. On | A. y e. A y C_ x } ) |
| 8 | 2 7 | syl | |- ( A C_ On -> U. A = |^| { x e. On | A. y e. A y C_ x } ) |