Metamath Proof Explorer


Theorem unipw

Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)

Ref Expression
Assertion unipw
|- U. ~P A = A

Proof

Step Hyp Ref Expression
1 eluni
 |-  ( x e. U. ~P A <-> E. y ( x e. y /\ y e. ~P A ) )
2 elelpwi
 |-  ( ( x e. y /\ y e. ~P A ) -> x e. A )
3 2 exlimiv
 |-  ( E. y ( x e. y /\ y e. ~P A ) -> x e. A )
4 1 3 sylbi
 |-  ( x e. U. ~P A -> x e. A )
5 vsnid
 |-  x e. { x }
6 snelpwi
 |-  ( x e. A -> { x } e. ~P A )
7 elunii
 |-  ( ( x e. { x } /\ { x } e. ~P A ) -> x e. U. ~P A )
8 5 6 7 sylancr
 |-  ( x e. A -> x e. U. ~P A )
9 4 8 impbii
 |-  ( x e. U. ~P A <-> x e. A )
10 9 eqriv
 |-  U. ~P A = A