Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | unipw | |- U. ~P A = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni | |- ( x e. U. ~P A <-> E. y ( x e. y /\ y e. ~P A ) ) |
|
2 | elelpwi | |- ( ( x e. y /\ y e. ~P A ) -> x e. A ) |
|
3 | 2 | exlimiv | |- ( E. y ( x e. y /\ y e. ~P A ) -> x e. A ) |
4 | 1 3 | sylbi | |- ( x e. U. ~P A -> x e. A ) |
5 | vsnid | |- x e. { x } |
|
6 | snelpwi | |- ( x e. A -> { x } e. ~P A ) |
|
7 | elunii | |- ( ( x e. { x } /\ { x } e. ~P A ) -> x e. U. ~P A ) |
|
8 | 5 6 7 | sylancr | |- ( x e. A -> x e. U. ~P A ) |
9 | 4 8 | impbii | |- ( x e. U. ~P A <-> x e. A ) |
10 | 9 | eqriv | |- U. ~P A = A |