| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qsss.1 |  |-  ( ph -> R Er A ) | 
						
							| 2 |  | qsss.2 |  |-  ( ph -> R e. V ) | 
						
							| 3 |  | uniqs |  |-  ( R e. V -> U. ( A /. R ) = ( R " A ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ph -> U. ( A /. R ) = ( R " A ) ) | 
						
							| 5 |  | erdm |  |-  ( R Er A -> dom R = A ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> dom R = A ) | 
						
							| 7 | 6 | imaeq2d |  |-  ( ph -> ( R " dom R ) = ( R " A ) ) | 
						
							| 8 | 4 7 | eqtr4d |  |-  ( ph -> U. ( A /. R ) = ( R " dom R ) ) | 
						
							| 9 |  | imadmrn |  |-  ( R " dom R ) = ran R | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( ph -> U. ( A /. R ) = ran R ) | 
						
							| 11 |  | errn |  |-  ( R Er A -> ran R = A ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ran R = A ) | 
						
							| 13 | 10 12 | eqtrd |  |-  ( ph -> U. ( A /. R ) = A ) |