Metamath Proof Explorer


Theorem unirestss

Description: The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unirestss.1
|- ( ph -> A e. V )
unirestss.2
|- ( ph -> B e. W )
Assertion unirestss
|- ( ph -> U. ( A |`t B ) C_ U. A )

Proof

Step Hyp Ref Expression
1 unirestss.1
 |-  ( ph -> A e. V )
2 unirestss.2
 |-  ( ph -> B e. W )
3 1 2 restuni6
 |-  ( ph -> U. ( A |`t B ) = ( U. A i^i B ) )
4 inss1
 |-  ( U. A i^i B ) C_ U. A
5 3 4 eqsstrdi
 |-  ( ph -> U. ( A |`t B ) C_ U. A )