| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unirnfdomd.1 |  |-  ( ph -> F : T --> Fin ) | 
						
							| 2 |  | unirnfdomd.2 |  |-  ( ph -> -. T e. Fin ) | 
						
							| 3 |  | unirnfdomd.3 |  |-  ( ph -> T e. V ) | 
						
							| 4 | 1 | ffnd |  |-  ( ph -> F Fn T ) | 
						
							| 5 |  | fnex |  |-  ( ( F Fn T /\ T e. V ) -> F e. _V ) | 
						
							| 6 | 4 3 5 | syl2anc |  |-  ( ph -> F e. _V ) | 
						
							| 7 |  | rnexg |  |-  ( F e. _V -> ran F e. _V ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ran F e. _V ) | 
						
							| 9 |  | frn |  |-  ( F : T --> Fin -> ran F C_ Fin ) | 
						
							| 10 |  | dfss3 |  |-  ( ran F C_ Fin <-> A. x e. ran F x e. Fin ) | 
						
							| 11 | 9 10 | sylib |  |-  ( F : T --> Fin -> A. x e. ran F x e. Fin ) | 
						
							| 12 |  | fict |  |-  ( x e. Fin -> x ~<_ _om ) | 
						
							| 13 | 12 | ralimi |  |-  ( A. x e. ran F x e. Fin -> A. x e. ran F x ~<_ _om ) | 
						
							| 14 | 1 11 13 | 3syl |  |-  ( ph -> A. x e. ran F x ~<_ _om ) | 
						
							| 15 |  | unidom |  |-  ( ( ran F e. _V /\ A. x e. ran F x ~<_ _om ) -> U. ran F ~<_ ( ran F X. _om ) ) | 
						
							| 16 | 8 14 15 | syl2anc |  |-  ( ph -> U. ran F ~<_ ( ran F X. _om ) ) | 
						
							| 17 |  | fnrndomg |  |-  ( T e. V -> ( F Fn T -> ran F ~<_ T ) ) | 
						
							| 18 | 3 4 17 | sylc |  |-  ( ph -> ran F ~<_ T ) | 
						
							| 19 |  | omex |  |-  _om e. _V | 
						
							| 20 | 19 | xpdom1 |  |-  ( ran F ~<_ T -> ( ran F X. _om ) ~<_ ( T X. _om ) ) | 
						
							| 21 | 18 20 | syl |  |-  ( ph -> ( ran F X. _om ) ~<_ ( T X. _om ) ) | 
						
							| 22 |  | domtr |  |-  ( ( U. ran F ~<_ ( ran F X. _om ) /\ ( ran F X. _om ) ~<_ ( T X. _om ) ) -> U. ran F ~<_ ( T X. _om ) ) | 
						
							| 23 | 16 21 22 | syl2anc |  |-  ( ph -> U. ran F ~<_ ( T X. _om ) ) | 
						
							| 24 |  | infinf |  |-  ( T e. V -> ( -. T e. Fin <-> _om ~<_ T ) ) | 
						
							| 25 | 3 24 | syl |  |-  ( ph -> ( -. T e. Fin <-> _om ~<_ T ) ) | 
						
							| 26 | 2 25 | mpbid |  |-  ( ph -> _om ~<_ T ) | 
						
							| 27 |  | xpdom2g |  |-  ( ( T e. V /\ _om ~<_ T ) -> ( T X. _om ) ~<_ ( T X. T ) ) | 
						
							| 28 | 3 26 27 | syl2anc |  |-  ( ph -> ( T X. _om ) ~<_ ( T X. T ) ) | 
						
							| 29 |  | domtr |  |-  ( ( U. ran F ~<_ ( T X. _om ) /\ ( T X. _om ) ~<_ ( T X. T ) ) -> U. ran F ~<_ ( T X. T ) ) | 
						
							| 30 | 23 28 29 | syl2anc |  |-  ( ph -> U. ran F ~<_ ( T X. T ) ) | 
						
							| 31 |  | infxpidm |  |-  ( _om ~<_ T -> ( T X. T ) ~~ T ) | 
						
							| 32 | 26 31 | syl |  |-  ( ph -> ( T X. T ) ~~ T ) | 
						
							| 33 |  | domentr |  |-  ( ( U. ran F ~<_ ( T X. T ) /\ ( T X. T ) ~~ T ) -> U. ran F ~<_ T ) | 
						
							| 34 | 30 32 33 | syl2anc |  |-  ( ph -> U. ran F ~<_ T ) |