Step |
Hyp |
Ref |
Expression |
1 |
|
unirnfdomd.1 |
|- ( ph -> F : T --> Fin ) |
2 |
|
unirnfdomd.2 |
|- ( ph -> -. T e. Fin ) |
3 |
|
unirnfdomd.3 |
|- ( ph -> T e. V ) |
4 |
1
|
ffnd |
|- ( ph -> F Fn T ) |
5 |
|
fnex |
|- ( ( F Fn T /\ T e. V ) -> F e. _V ) |
6 |
4 3 5
|
syl2anc |
|- ( ph -> F e. _V ) |
7 |
|
rnexg |
|- ( F e. _V -> ran F e. _V ) |
8 |
6 7
|
syl |
|- ( ph -> ran F e. _V ) |
9 |
|
frn |
|- ( F : T --> Fin -> ran F C_ Fin ) |
10 |
|
dfss3 |
|- ( ran F C_ Fin <-> A. x e. ran F x e. Fin ) |
11 |
9 10
|
sylib |
|- ( F : T --> Fin -> A. x e. ran F x e. Fin ) |
12 |
|
fict |
|- ( x e. Fin -> x ~<_ _om ) |
13 |
12
|
ralimi |
|- ( A. x e. ran F x e. Fin -> A. x e. ran F x ~<_ _om ) |
14 |
1 11 13
|
3syl |
|- ( ph -> A. x e. ran F x ~<_ _om ) |
15 |
|
unidom |
|- ( ( ran F e. _V /\ A. x e. ran F x ~<_ _om ) -> U. ran F ~<_ ( ran F X. _om ) ) |
16 |
8 14 15
|
syl2anc |
|- ( ph -> U. ran F ~<_ ( ran F X. _om ) ) |
17 |
|
fnrndomg |
|- ( T e. V -> ( F Fn T -> ran F ~<_ T ) ) |
18 |
3 4 17
|
sylc |
|- ( ph -> ran F ~<_ T ) |
19 |
|
omex |
|- _om e. _V |
20 |
19
|
xpdom1 |
|- ( ran F ~<_ T -> ( ran F X. _om ) ~<_ ( T X. _om ) ) |
21 |
18 20
|
syl |
|- ( ph -> ( ran F X. _om ) ~<_ ( T X. _om ) ) |
22 |
|
domtr |
|- ( ( U. ran F ~<_ ( ran F X. _om ) /\ ( ran F X. _om ) ~<_ ( T X. _om ) ) -> U. ran F ~<_ ( T X. _om ) ) |
23 |
16 21 22
|
syl2anc |
|- ( ph -> U. ran F ~<_ ( T X. _om ) ) |
24 |
|
infinf |
|- ( T e. V -> ( -. T e. Fin <-> _om ~<_ T ) ) |
25 |
3 24
|
syl |
|- ( ph -> ( -. T e. Fin <-> _om ~<_ T ) ) |
26 |
2 25
|
mpbid |
|- ( ph -> _om ~<_ T ) |
27 |
|
xpdom2g |
|- ( ( T e. V /\ _om ~<_ T ) -> ( T X. _om ) ~<_ ( T X. T ) ) |
28 |
3 26 27
|
syl2anc |
|- ( ph -> ( T X. _om ) ~<_ ( T X. T ) ) |
29 |
|
domtr |
|- ( ( U. ran F ~<_ ( T X. _om ) /\ ( T X. _om ) ~<_ ( T X. T ) ) -> U. ran F ~<_ ( T X. T ) ) |
30 |
23 28 29
|
syl2anc |
|- ( ph -> U. ran F ~<_ ( T X. T ) ) |
31 |
|
infxpidm |
|- ( _om ~<_ T -> ( T X. T ) ~~ T ) |
32 |
26 31
|
syl |
|- ( ph -> ( T X. T ) ~~ T ) |
33 |
|
domentr |
|- ( ( U. ran F ~<_ ( T X. T ) /\ ( T X. T ) ~~ T ) -> U. ran F ~<_ T ) |
34 |
30 32 33
|
syl2anc |
|- ( ph -> U. ran F ~<_ T ) |