Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unirnffid.1 | |- ( ph -> F : T --> Fin ) | |
| unirnffid.2 | |- ( ph -> T e. Fin ) | ||
| Assertion | unirnffid | |- ( ph -> U. ran F e. Fin ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unirnffid.1 | |- ( ph -> F : T --> Fin ) | |
| 2 | unirnffid.2 | |- ( ph -> T e. Fin ) | |
| 3 | 1 | ffnd | |- ( ph -> F Fn T ) | 
| 4 | fnfi | |- ( ( F Fn T /\ T e. Fin ) -> F e. Fin ) | |
| 5 | 3 2 4 | syl2anc | |- ( ph -> F e. Fin ) | 
| 6 | rnfi | |- ( F e. Fin -> ran F e. Fin ) | |
| 7 | 5 6 | syl | |- ( ph -> ran F e. Fin ) | 
| 8 | 1 | frnd | |- ( ph -> ran F C_ Fin ) | 
| 9 | unifi | |- ( ( ran F e. Fin /\ ran F C_ Fin ) -> U. ran F e. Fin ) | |
| 10 | 7 8 9 | syl2anc | |- ( ph -> U. ran F e. Fin ) |