Metamath Proof Explorer


Theorem unisn

Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis unisn.1
|- A e. _V
Assertion unisn
|- U. { A } = A

Proof

Step Hyp Ref Expression
1 unisn.1
 |-  A e. _V
2 unisng
 |-  ( A e. _V -> U. { A } = A )
3 1 2 ax-mp
 |-  U. { A } = A