Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 30-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unisn.1 | |- A e. _V |
|
| Assertion | unisn | |- U. { A } = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisn.1 | |- A e. _V |
|
| 2 | unisng | |- ( A e. _V -> U. { A } = A ) |
|
| 3 | 1 2 | ax-mp | |- U. { A } = A |