Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 30-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | unisn.1 | |- A e. _V |
|
Assertion | unisn | |- U. { A } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisn.1 | |- A e. _V |
|
2 | unisng | |- ( A e. _V -> U. { A } = A ) |
|
3 | 1 2 | ax-mp | |- U. { A } = A |