Metamath Proof Explorer


Theorem unisn3

Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008)

Ref Expression
Assertion unisn3
|- ( A e. B -> U. { x e. B | x = A } = A )

Proof

Step Hyp Ref Expression
1 rabsn
 |-  ( A e. B -> { x e. B | x = A } = { A } )
2 1 unieqd
 |-  ( A e. B -> U. { x e. B | x = A } = U. { A } )
3 unisng
 |-  ( A e. B -> U. { A } = A )
4 2 3 eqtrd
 |-  ( A e. B -> U. { x e. B | x = A } = A )