Metamath Proof Explorer


Theorem unisng

Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 13-Aug-2002)

Ref Expression
Assertion unisng
|- ( A e. V -> U. { A } = A )

Proof

Step Hyp Ref Expression
1 dfsn2
 |-  { A } = { A , A }
2 1 unieqi
 |-  U. { A } = U. { A , A }
3 2 a1i
 |-  ( A e. V -> U. { A } = U. { A , A } )
4 uniprg
 |-  ( ( A e. V /\ A e. V ) -> U. { A , A } = ( A u. A ) )
5 4 anidms
 |-  ( A e. V -> U. { A , A } = ( A u. A ) )
6 unidm
 |-  ( A u. A ) = A
7 6 a1i
 |-  ( A e. V -> ( A u. A ) = A )
8 3 5 7 3eqtrd
 |-  ( A e. V -> U. { A } = A )