Description: A set equals the union of its singleton. Theorem 8.2 of Quine p. 53. (Contributed by NM, 13-Aug-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | unisng | |- ( A e. V -> U. { A } = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 | |- { A } = { A , A } |
|
2 | 1 | unieqi | |- U. { A } = U. { A , A } |
3 | 2 | a1i | |- ( A e. V -> U. { A } = U. { A , A } ) |
4 | uniprg | |- ( ( A e. V /\ A e. V ) -> U. { A , A } = ( A u. A ) ) |
|
5 | 4 | anidms | |- ( A e. V -> U. { A , A } = ( A u. A ) ) |
6 | unidm | |- ( A u. A ) = A |
|
7 | 6 | a1i | |- ( A e. V -> ( A u. A ) = A ) |
8 | 3 5 7 | 3eqtrd | |- ( A e. V -> U. { A } = A ) |