Metamath Proof Explorer


Theorem unisnv

Description: A set equals the union of its singleton (setvar case). (Contributed by NM, 30-Aug-1993)

Ref Expression
Assertion unisnv
|- U. { x } = x

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 unisn
 |-  U. { x } = x