Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of TakeutiZaring p. 59. See iunss2 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | uniss2 | |- ( A. x e. A E. y e. B x C_ y -> U. A C_ U. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssuni | |- ( ( x C_ y /\ y e. B ) -> x C_ U. B ) |
|
2 | 1 | expcom | |- ( y e. B -> ( x C_ y -> x C_ U. B ) ) |
3 | 2 | rexlimiv | |- ( E. y e. B x C_ y -> x C_ U. B ) |
4 | 3 | ralimi | |- ( A. x e. A E. y e. B x C_ y -> A. x e. A x C_ U. B ) |
5 | unissb | |- ( U. A C_ U. B <-> A. x e. A x C_ U. B ) |
|
6 | 4 5 | sylibr | |- ( A. x e. A E. y e. B x C_ y -> U. A C_ U. B ) |