Metamath Proof Explorer


Theorem uniss2

Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of TakeutiZaring p. 59. See iunss2 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion uniss2
|- ( A. x e. A E. y e. B x C_ y -> U. A C_ U. B )

Proof

Step Hyp Ref Expression
1 ssuni
 |-  ( ( x C_ y /\ y e. B ) -> x C_ U. B )
2 1 expcom
 |-  ( y e. B -> ( x C_ y -> x C_ U. B ) )
3 2 rexlimiv
 |-  ( E. y e. B x C_ y -> x C_ U. B )
4 3 ralimi
 |-  ( A. x e. A E. y e. B x C_ y -> A. x e. A x C_ U. B )
5 unissb
 |-  ( U. A C_ U. B <-> A. x e. A x C_ U. B )
6 4 5 sylibr
 |-  ( A. x e. A E. y e. B x C_ y -> U. A C_ U. B )