Description: Subclass relationship for subclass union. Deduction form of uniss . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | unissd.1 | |- ( ph -> A C_ B ) |
|
Assertion | unissd | |- ( ph -> U. A C_ U. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissd.1 | |- ( ph -> A C_ B ) |
|
2 | uniss | |- ( A C_ B -> U. A C_ U. B ) |
|
3 | 1 2 | syl | |- ( ph -> U. A C_ U. B ) |