Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unissel | |- ( ( U. A C_ B /\ B e. A ) -> U. A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( U. A C_ B /\ B e. A ) -> U. A C_ B ) |
|
| 2 | elssuni | |- ( B e. A -> B C_ U. A ) |
|
| 3 | 2 | adantl | |- ( ( U. A C_ B /\ B e. A ) -> B C_ U. A ) |
| 4 | 1 3 | eqssd | |- ( ( U. A C_ B /\ B e. A ) -> U. A = B ) |