Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | unisuc.1 | |- A e. _V |
|
Assertion | unisuc | |- ( Tr A <-> U. suc A = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisuc.1 | |- A e. _V |
|
2 | ssequn1 | |- ( U. A C_ A <-> ( U. A u. A ) = A ) |
|
3 | df-tr | |- ( Tr A <-> U. A C_ A ) |
|
4 | df-suc | |- suc A = ( A u. { A } ) |
|
5 | 4 | unieqi | |- U. suc A = U. ( A u. { A } ) |
6 | uniun | |- U. ( A u. { A } ) = ( U. A u. U. { A } ) |
|
7 | 1 | unisn | |- U. { A } = A |
8 | 7 | uneq2i | |- ( U. A u. U. { A } ) = ( U. A u. A ) |
9 | 5 6 8 | 3eqtri | |- U. suc A = ( U. A u. A ) |
10 | 9 | eqeq1i | |- ( U. suc A = A <-> ( U. A u. A ) = A ) |
11 | 2 3 10 | 3bitr4i | |- ( Tr A <-> U. suc A = A ) |