Metamath Proof Explorer


Theorem unisucg

Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993) Generalize from unisuc . (Revised by BJ, 28-Dec-2024)

Ref Expression
Assertion unisucg
|- ( A e. V -> ( Tr A <-> U. suc A = A ) )

Proof

Step Hyp Ref Expression
1 ssequn1
 |-  ( U. A C_ A <-> ( U. A u. A ) = A )
2 1 a1i
 |-  ( A e. V -> ( U. A C_ A <-> ( U. A u. A ) = A ) )
3 df-tr
 |-  ( Tr A <-> U. A C_ A )
4 3 a1i
 |-  ( A e. V -> ( Tr A <-> U. A C_ A ) )
5 unisucs
 |-  ( A e. V -> U. suc A = ( U. A u. A ) )
6 5 eqeq1d
 |-  ( A e. V -> ( U. suc A = A <-> ( U. A u. A ) = A ) )
7 2 4 6 3bitr4d
 |-  ( A e. V -> ( Tr A <-> U. suc A = A ) )