Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993) Generalize from unisuc . (Revised by BJ, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisucg | |- ( A e. V -> ( Tr A <-> U. suc A = A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssequn1 | |- ( U. A C_ A <-> ( U. A u. A ) = A ) | |
| 2 | 1 | a1i | |- ( A e. V -> ( U. A C_ A <-> ( U. A u. A ) = A ) ) | 
| 3 | df-tr | |- ( Tr A <-> U. A C_ A ) | |
| 4 | 3 | a1i | |- ( A e. V -> ( Tr A <-> U. A C_ A ) ) | 
| 5 | unisucs | |- ( A e. V -> U. suc A = ( U. A u. A ) ) | |
| 6 | 5 | eqeq1d | |- ( A e. V -> ( U. suc A = A <-> ( U. A u. A ) = A ) ) | 
| 7 | 2 4 6 | 3bitr4d | |- ( A e. V -> ( Tr A <-> U. suc A = A ) ) |