Description: The union of the successor of a set is equal to the binary union of that set with its union. (Contributed by NM, 30-Aug-1993) Extract from unisuc . (Revised by BJ, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisucs | |- ( A e. V -> U. suc A = ( U. A u. A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-suc |  |-  suc A = ( A u. { A } ) | |
| 2 | 1 | unieqi |  |-  U. suc A = U. ( A u. { A } ) | 
| 3 | 2 | a1i |  |-  ( A e. V -> U. suc A = U. ( A u. { A } ) ) | 
| 4 | uniun |  |-  U. ( A u. { A } ) = ( U. A u. U. { A } ) | |
| 5 | 4 | a1i |  |-  ( A e. V -> U. ( A u. { A } ) = ( U. A u. U. { A } ) ) | 
| 6 | unisng |  |-  ( A e. V -> U. { A } = A ) | |
| 7 | 6 | uneq2d |  |-  ( A e. V -> ( U. A u. U. { A } ) = ( U. A u. A ) ) | 
| 8 | 3 5 7 | 3eqtrd | |- ( A e. V -> U. suc A = ( U. A u. A ) ) |