Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
|- U = ( Unit ` R ) |
2 |
|
unitgrp.2 |
|- G = ( ( mulGrp ` R ) |`s U ) |
3 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
4 |
1 2
|
unitgrp |
|- ( R e. Ring -> G e. Grp ) |
5 |
3 4
|
syl |
|- ( R e. CRing -> G e. Grp ) |
6 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
7 |
6
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
8 |
5
|
grpmndd |
|- ( R e. CRing -> G e. Mnd ) |
9 |
2
|
subcmn |
|- ( ( ( mulGrp ` R ) e. CMnd /\ G e. Mnd ) -> G e. CMnd ) |
10 |
7 8 9
|
syl2anc |
|- ( R e. CRing -> G e. CMnd ) |
11 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
12 |
5 10 11
|
sylanbrc |
|- ( R e. CRing -> G e. Abel ) |