| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitmulcl.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unitgrp.2 |
|- G = ( ( mulGrp ` R ) |`s U ) |
| 3 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 4 |
1 2
|
unitgrp |
|- ( R e. Ring -> G e. Grp ) |
| 5 |
3 4
|
syl |
|- ( R e. CRing -> G e. Grp ) |
| 6 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 7 |
6
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 8 |
5
|
grpmndd |
|- ( R e. CRing -> G e. Mnd ) |
| 9 |
2
|
subcmn |
|- ( ( ( mulGrp ` R ) e. CMnd /\ G e. Mnd ) -> G e. CMnd ) |
| 10 |
7 8 9
|
syl2anc |
|- ( R e. CRing -> G e. CMnd ) |
| 11 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
| 12 |
5 10 11
|
sylanbrc |
|- ( R e. CRing -> G e. Abel ) |