Step |
Hyp |
Ref |
Expression |
1 |
|
elunitrn |
|- ( A e. ( 0 [,] 1 ) -> A e. RR ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> A e. RR ) |
3 |
|
elunitrn |
|- ( B e. ( 0 [,] 1 ) -> B e. RR ) |
4 |
3
|
3ad2ant2 |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> B e. RR ) |
5 |
|
simp3 |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> B =/= 0 ) |
6 |
2 4 5
|
redivcld |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A / B ) e. RR ) |
7 |
6
|
adantr |
|- ( ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) /\ A <_ B ) -> ( A / B ) e. RR ) |
8 |
|
elunitge0 |
|- ( A e. ( 0 [,] 1 ) -> 0 <_ A ) |
9 |
8
|
3ad2ant1 |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 0 <_ A ) |
10 |
|
elunitge0 |
|- ( B e. ( 0 [,] 1 ) -> 0 <_ B ) |
11 |
10
|
adantr |
|- ( ( B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 0 <_ B ) |
12 |
|
0re |
|- 0 e. RR |
13 |
|
ltlen |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
14 |
12 3 13
|
sylancr |
|- ( B e. ( 0 [,] 1 ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
15 |
14
|
biimpar |
|- ( ( B e. ( 0 [,] 1 ) /\ ( 0 <_ B /\ B =/= 0 ) ) -> 0 < B ) |
16 |
15
|
3impb |
|- ( ( B e. ( 0 [,] 1 ) /\ 0 <_ B /\ B =/= 0 ) -> 0 < B ) |
17 |
16
|
3com23 |
|- ( ( B e. ( 0 [,] 1 ) /\ B =/= 0 /\ 0 <_ B ) -> 0 < B ) |
18 |
11 17
|
mpd3an3 |
|- ( ( B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 0 < B ) |
19 |
18
|
3adant1 |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 0 < B ) |
20 |
|
divge0 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 <_ ( A / B ) ) |
21 |
2 9 4 19 20
|
syl22anc |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 0 <_ ( A / B ) ) |
22 |
21
|
adantr |
|- ( ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) /\ A <_ B ) -> 0 <_ ( A / B ) ) |
23 |
|
1red |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> 1 e. RR ) |
24 |
|
ledivmul |
|- ( ( A e. RR /\ 1 e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) <_ 1 <-> A <_ ( B x. 1 ) ) ) |
25 |
2 23 4 19 24
|
syl112anc |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( ( A / B ) <_ 1 <-> A <_ ( B x. 1 ) ) ) |
26 |
|
ax-1rid |
|- ( B e. RR -> ( B x. 1 ) = B ) |
27 |
26
|
breq2d |
|- ( B e. RR -> ( A <_ ( B x. 1 ) <-> A <_ B ) ) |
28 |
4 27
|
syl |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A <_ ( B x. 1 ) <-> A <_ B ) ) |
29 |
25 28
|
bitr2d |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A <_ B <-> ( A / B ) <_ 1 ) ) |
30 |
29
|
biimpa |
|- ( ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) /\ A <_ B ) -> ( A / B ) <_ 1 ) |
31 |
7 22 30
|
3jca |
|- ( ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) /\ A <_ B ) -> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) ) |
32 |
31
|
ex |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A <_ B -> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) ) ) |
33 |
|
simp3 |
|- ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) -> ( A / B ) <_ 1 ) |
34 |
33 29
|
syl5ibr |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) -> A <_ B ) ) |
35 |
32 34
|
impbid |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A <_ B <-> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) ) ) |
36 |
|
elicc01 |
|- ( ( A / B ) e. ( 0 [,] 1 ) <-> ( ( A / B ) e. RR /\ 0 <_ ( A / B ) /\ ( A / B ) <_ 1 ) ) |
37 |
35 36
|
bitr4di |
|- ( ( A e. ( 0 [,] 1 ) /\ B e. ( 0 [,] 1 ) /\ B =/= 0 ) -> ( A <_ B <-> ( A / B ) e. ( 0 [,] 1 ) ) ) |