Step |
Hyp |
Ref |
Expression |
1 |
|
unitdvcl.o |
|- U = ( Unit ` R ) |
2 |
|
unitdvcl.d |
|- ./ = ( /r ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 1
|
unitcl |
|- ( X e. U -> X e. ( Base ` R ) ) |
5 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
6 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
7 |
3 5 1 6 2
|
dvrval |
|- ( ( X e. ( Base ` R ) /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
8 |
4 7
|
sylan |
|- ( ( X e. U /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
9 |
8
|
3adant1 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
10 |
1 6
|
unitinvcl |
|- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
11 |
10
|
3adant2 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
12 |
1 5
|
unitmulcl |
|- ( ( R e. Ring /\ X e. U /\ ( ( invr ` R ) ` Y ) e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. U ) |
13 |
11 12
|
syld3an3 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. U ) |
14 |
9 13
|
eqeltrd |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ./ Y ) e. U ) |