Metamath Proof Explorer


Theorem unitg

Description: The topology generated by a basis B is a topology on U. B . Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Assertion unitg
|- ( B e. V -> U. ( topGen ` B ) = U. B )

Proof

Step Hyp Ref Expression
1 tg1
 |-  ( x e. ( topGen ` B ) -> x C_ U. B )
2 velpw
 |-  ( x e. ~P U. B <-> x C_ U. B )
3 1 2 sylibr
 |-  ( x e. ( topGen ` B ) -> x e. ~P U. B )
4 3 ssriv
 |-  ( topGen ` B ) C_ ~P U. B
5 sspwuni
 |-  ( ( topGen ` B ) C_ ~P U. B <-> U. ( topGen ` B ) C_ U. B )
6 4 5 mpbi
 |-  U. ( topGen ` B ) C_ U. B
7 6 a1i
 |-  ( B e. V -> U. ( topGen ` B ) C_ U. B )
8 bastg
 |-  ( B e. V -> B C_ ( topGen ` B ) )
9 8 unissd
 |-  ( B e. V -> U. B C_ U. ( topGen ` B ) )
10 7 9 eqssd
 |-  ( B e. V -> U. ( topGen ` B ) = U. B )