Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
|- U = ( Unit ` R ) |
2 |
|
unitgrp.2 |
|- G = ( ( mulGrp ` R ) |`s U ) |
3 |
1 2
|
unitgrpbas |
|- U = ( Base ` G ) |
4 |
3
|
a1i |
|- ( R e. Ring -> U = ( Base ` G ) ) |
5 |
1
|
fvexi |
|- U e. _V |
6 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
6 7
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
9 |
2 8
|
ressplusg |
|- ( U e. _V -> ( .r ` R ) = ( +g ` G ) ) |
10 |
5 9
|
mp1i |
|- ( R e. Ring -> ( .r ` R ) = ( +g ` G ) ) |
11 |
1 7
|
unitmulcl |
|- ( ( R e. Ring /\ x e. U /\ y e. U ) -> ( x ( .r ` R ) y ) e. U ) |
12 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
13 |
12 1
|
unitcl |
|- ( x e. U -> x e. ( Base ` R ) ) |
14 |
12 1
|
unitcl |
|- ( y e. U -> y e. ( Base ` R ) ) |
15 |
12 1
|
unitcl |
|- ( z e. U -> z e. ( Base ` R ) ) |
16 |
13 14 15
|
3anim123i |
|- ( ( x e. U /\ y e. U /\ z e. U ) -> ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) |
17 |
12 7
|
ringass |
|- ( ( R e. Ring /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
18 |
16 17
|
sylan2 |
|- ( ( R e. Ring /\ ( x e. U /\ y e. U /\ z e. U ) ) -> ( ( x ( .r ` R ) y ) ( .r ` R ) z ) = ( x ( .r ` R ) ( y ( .r ` R ) z ) ) ) |
19 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
20 |
1 19
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
21 |
12 7 19
|
ringlidm |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
22 |
13 21
|
sylan2 |
|- ( ( R e. Ring /\ x e. U ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
23 |
|
simpr |
|- ( ( R e. Ring /\ x e. U ) -> x e. U ) |
24 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
25 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
26 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
27 |
1 19 24 25 26
|
isunit |
|- ( x e. U <-> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
28 |
23 27
|
sylib |
|- ( ( R e. Ring /\ x e. U ) -> ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
29 |
13
|
adantl |
|- ( ( R e. Ring /\ x e. U ) -> x e. ( Base ` R ) ) |
30 |
12 24 7
|
dvdsr2 |
|- ( x e. ( Base ` R ) -> ( x ( ||r ` R ) ( 1r ` R ) <-> E. y e. ( Base ` R ) ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
31 |
29 30
|
syl |
|- ( ( R e. Ring /\ x e. U ) -> ( x ( ||r ` R ) ( 1r ` R ) <-> E. y e. ( Base ` R ) ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
32 |
25 12
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
33 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
34 |
32 26 33
|
dvdsr2 |
|- ( x e. ( Base ` R ) -> ( x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) <-> E. m e. ( Base ` R ) ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) |
35 |
29 34
|
syl |
|- ( ( R e. Ring /\ x e. U ) -> ( x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) <-> E. m e. ( Base ` R ) ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) |
36 |
31 35
|
anbi12d |
|- ( ( R e. Ring /\ x e. U ) -> ( ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) <-> ( E. y e. ( Base ` R ) ( y ( .r ` R ) x ) = ( 1r ` R ) /\ E. m e. ( Base ` R ) ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) |
37 |
|
reeanv |
|- ( E. y e. ( Base ` R ) E. m e. ( Base ` R ) ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) <-> ( E. y e. ( Base ` R ) ( y ( .r ` R ) x ) = ( 1r ` R ) /\ E. m e. ( Base ` R ) ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) |
38 |
|
simprl |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> m e. ( Base ` R ) ) |
39 |
29
|
ad2antrr |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> x e. ( Base ` R ) ) |
40 |
12 24 7
|
dvdsrmul |
|- ( ( m e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> m ( ||r ` R ) ( x ( .r ` R ) m ) ) |
41 |
38 39 40
|
syl2anc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> m ( ||r ` R ) ( x ( .r ` R ) m ) ) |
42 |
|
simplll |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> R e. Ring ) |
43 |
|
simplr |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> y e. ( Base ` R ) ) |
44 |
12 7
|
ringass |
|- ( ( R e. Ring /\ ( y e. ( Base ` R ) /\ x e. ( Base ` R ) /\ m e. ( Base ` R ) ) ) -> ( ( y ( .r ` R ) x ) ( .r ` R ) m ) = ( y ( .r ` R ) ( x ( .r ` R ) m ) ) ) |
45 |
42 43 39 38 44
|
syl13anc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( ( y ( .r ` R ) x ) ( .r ` R ) m ) = ( y ( .r ` R ) ( x ( .r ` R ) m ) ) ) |
46 |
|
simprrl |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( y ( .r ` R ) x ) = ( 1r ` R ) ) |
47 |
46
|
oveq1d |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( ( y ( .r ` R ) x ) ( .r ` R ) m ) = ( ( 1r ` R ) ( .r ` R ) m ) ) |
48 |
12 7 25 33
|
opprmul |
|- ( m ( .r ` ( oppR ` R ) ) x ) = ( x ( .r ` R ) m ) |
49 |
|
simprrr |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) |
50 |
48 49
|
eqtr3id |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( x ( .r ` R ) m ) = ( 1r ` R ) ) |
51 |
50
|
oveq2d |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( y ( .r ` R ) ( x ( .r ` R ) m ) ) = ( y ( .r ` R ) ( 1r ` R ) ) ) |
52 |
45 47 51
|
3eqtr3d |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( ( 1r ` R ) ( .r ` R ) m ) = ( y ( .r ` R ) ( 1r ` R ) ) ) |
53 |
12 7 19
|
ringlidm |
|- ( ( R e. Ring /\ m e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) m ) = m ) |
54 |
42 38 53
|
syl2anc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( ( 1r ` R ) ( .r ` R ) m ) = m ) |
55 |
12 7 19
|
ringridm |
|- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( y ( .r ` R ) ( 1r ` R ) ) = y ) |
56 |
42 43 55
|
syl2anc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( y ( .r ` R ) ( 1r ` R ) ) = y ) |
57 |
52 54 56
|
3eqtr3d |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> m = y ) |
58 |
41 57 50
|
3brtr3d |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> y ( ||r ` R ) ( 1r ` R ) ) |
59 |
32 26 33
|
dvdsrmul |
|- ( ( y e. ( Base ` R ) /\ x e. ( Base ` R ) ) -> y ( ||r ` ( oppR ` R ) ) ( x ( .r ` ( oppR ` R ) ) y ) ) |
60 |
43 39 59
|
syl2anc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> y ( ||r ` ( oppR ` R ) ) ( x ( .r ` ( oppR ` R ) ) y ) ) |
61 |
12 7 25 33
|
opprmul |
|- ( x ( .r ` ( oppR ` R ) ) y ) = ( y ( .r ` R ) x ) |
62 |
61 46
|
eqtrid |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( x ( .r ` ( oppR ` R ) ) y ) = ( 1r ` R ) ) |
63 |
60 62
|
breqtrd |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
64 |
1 19 24 25 26
|
isunit |
|- ( y e. U <-> ( y ( ||r ` R ) ( 1r ` R ) /\ y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
65 |
58 63 64
|
sylanbrc |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> y e. U ) |
66 |
65 46
|
jca |
|- ( ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) /\ ( m e. ( Base ` R ) /\ ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) ) -> ( y e. U /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
67 |
66
|
rexlimdvaa |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( E. m e. ( Base ` R ) ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) -> ( y e. U /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) ) |
68 |
67
|
expimpd |
|- ( ( R e. Ring /\ x e. U ) -> ( ( y e. ( Base ` R ) /\ E. m e. ( Base ` R ) ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) ) -> ( y e. U /\ ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) ) |
69 |
68
|
reximdv2 |
|- ( ( R e. Ring /\ x e. U ) -> ( E. y e. ( Base ` R ) E. m e. ( Base ` R ) ( ( y ( .r ` R ) x ) = ( 1r ` R ) /\ ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) -> E. y e. U ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
70 |
37 69
|
syl5bir |
|- ( ( R e. Ring /\ x e. U ) -> ( ( E. y e. ( Base ` R ) ( y ( .r ` R ) x ) = ( 1r ` R ) /\ E. m e. ( Base ` R ) ( m ( .r ` ( oppR ` R ) ) x ) = ( 1r ` R ) ) -> E. y e. U ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
71 |
36 70
|
sylbid |
|- ( ( R e. Ring /\ x e. U ) -> ( ( x ( ||r ` R ) ( 1r ` R ) /\ x ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> E. y e. U ( y ( .r ` R ) x ) = ( 1r ` R ) ) ) |
72 |
28 71
|
mpd |
|- ( ( R e. Ring /\ x e. U ) -> E. y e. U ( y ( .r ` R ) x ) = ( 1r ` R ) ) |
73 |
4 10 11 18 20 22 72
|
isgrpde |
|- ( R e. Ring -> G e. Grp ) |