Metamath Proof Explorer


Theorem unitgrpbas

Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1
|- U = ( Unit ` R )
unitgrp.2
|- G = ( ( mulGrp ` R ) |`s U )
Assertion unitgrpbas
|- U = ( Base ` G )

Proof

Step Hyp Ref Expression
1 unitmulcl.1
 |-  U = ( Unit ` R )
2 unitgrp.2
 |-  G = ( ( mulGrp ` R ) |`s U )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 3 1 unitss
 |-  U C_ ( Base ` R )
5 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
6 5 3 mgpbas
 |-  ( Base ` R ) = ( Base ` ( mulGrp ` R ) )
7 2 6 ressbas2
 |-  ( U C_ ( Base ` R ) -> U = ( Base ` G ) )
8 4 7 ax-mp
 |-  U = ( Base ` G )