Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitmulcl.1 | |- U = ( Unit ` R ) |
|
unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
||
Assertion | unitgrpbas | |- U = ( Base ` G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitmulcl.1 | |- U = ( Unit ` R ) |
|
2 | unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | 3 1 | unitss | |- U C_ ( Base ` R ) |
5 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
6 | 5 3 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
7 | 2 6 | ressbas2 | |- ( U C_ ( Base ` R ) -> U = ( Base ` G ) ) |
8 | 4 7 | ax-mp | |- U = ( Base ` G ) |