Description: The identity of the group of units of a ring is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
||
| unitgrp.3 | |- .1. = ( 1r ` R ) |
||
| Assertion | unitgrpid | |- ( R e. Ring -> .1. = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitmulcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitgrp.2 | |- G = ( ( mulGrp ` R ) |`s U ) |
|
| 3 | unitgrp.3 | |- .1. = ( 1r ` R ) |
|
| 4 | 1 3 | 1unit | |- ( R e. Ring -> .1. e. U ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 1 | unitss | |- U C_ ( Base ` R ) |
| 7 | 2 5 3 | ringidss | |- ( ( R e. Ring /\ U C_ ( Base ` R ) /\ .1. e. U ) -> .1. = ( 0g ` G ) ) |
| 8 | 6 7 | mp3an2 | |- ( ( R e. Ring /\ .1. e. U ) -> .1. = ( 0g ` G ) ) |
| 9 | 4 8 | mpdan | |- ( R e. Ring -> .1. = ( 0g ` G ) ) |