Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitinvcl.1 | |- U = ( Unit ` R ) |
|
unitinvcl.2 | |- I = ( invr ` R ) |
||
Assertion | unitinvcl | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | |- U = ( Unit ` R ) |
|
2 | unitinvcl.2 | |- I = ( invr ` R ) |
|
3 | eqid | |- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
|
4 | 1 3 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
5 | 1 3 | unitgrpbas | |- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
6 | 1 3 2 | invrfval | |- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
7 | 5 6 | grpinvcl | |- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( I ` X ) e. U ) |
8 | 4 7 | sylan | |- ( ( R e. Ring /\ X e. U ) -> ( I ` X ) e. U ) |