| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitmulcl.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unitmulcl.2 |
|- .x. = ( .r ` R ) |
| 3 |
|
simp1 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> R e. Ring ) |
| 4 |
|
simp3 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y e. U ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 1
|
unitcl |
|- ( Y e. U -> Y e. ( Base ` R ) ) |
| 7 |
4 6
|
syl |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y e. ( Base ` R ) ) |
| 8 |
|
simp2 |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X e. U ) |
| 9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 10 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 11 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 12 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
| 13 |
1 9 10 11 12
|
isunit |
|- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 14 |
8 13
|
sylib |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 15 |
14
|
simpld |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X ( ||r ` R ) ( 1r ` R ) ) |
| 16 |
5 10 2
|
dvdsrmul1 |
|- ( ( R e. Ring /\ Y e. ( Base ` R ) /\ X ( ||r ` R ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` R ) ( ( 1r ` R ) .x. Y ) ) |
| 17 |
3 7 15 16
|
syl3anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) ( ( 1r ` R ) .x. Y ) ) |
| 18 |
5 2 9
|
ringlidm |
|- ( ( R e. Ring /\ Y e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 19 |
3 7 18
|
syl2anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 20 |
17 19
|
breqtrd |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) Y ) |
| 21 |
1 9 10 11 12
|
isunit |
|- ( Y e. U <-> ( Y ( ||r ` R ) ( 1r ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 22 |
4 21
|
sylib |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( ||r ` R ) ( 1r ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 23 |
22
|
simpld |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y ( ||r ` R ) ( 1r ` R ) ) |
| 24 |
5 10
|
dvdsrtr |
|- ( ( R e. Ring /\ ( X .x. Y ) ( ||r ` R ) Y /\ Y ( ||r ` R ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) ) |
| 25 |
3 20 23 24
|
syl3anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) ) |
| 26 |
11
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 27 |
3 26
|
syl |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( oppR ` R ) e. Ring ) |
| 28 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
| 29 |
5 2 11 28
|
opprmul |
|- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .x. Y ) |
| 30 |
5 1
|
unitcl |
|- ( X e. U -> X e. ( Base ` R ) ) |
| 31 |
8 30
|
syl |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X e. ( Base ` R ) ) |
| 32 |
22
|
simprd |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 33 |
11 5
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 34 |
33 12 28
|
dvdsrmul1 |
|- ( ( ( oppR ` R ) e. Ring /\ X e. ( Base ` R ) /\ Y ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) ) |
| 35 |
27 31 32 34
|
syl3anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) ) |
| 36 |
5 2 11 28
|
opprmul |
|- ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) = ( X .x. ( 1r ` R ) ) |
| 37 |
5 2 9
|
ringridm |
|- ( ( R e. Ring /\ X e. ( Base ` R ) ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 38 |
3 31 37
|
syl2anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 39 |
36 38
|
eqtrid |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( 1r ` R ) ( .r ` ( oppR ` R ) ) X ) = X ) |
| 40 |
35 39
|
breqtrd |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( Y ( .r ` ( oppR ` R ) ) X ) ( ||r ` ( oppR ` R ) ) X ) |
| 41 |
29 40
|
eqbrtrrid |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) X ) |
| 42 |
14
|
simprd |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 43 |
33 12
|
dvdsrtr |
|- ( ( ( oppR ` R ) e. Ring /\ ( X .x. Y ) ( ||r ` ( oppR ` R ) ) X /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 44 |
27 41 42 43
|
syl3anc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 45 |
1 9 10 11 12
|
isunit |
|- ( ( X .x. Y ) e. U <-> ( ( X .x. Y ) ( ||r ` R ) ( 1r ` R ) /\ ( X .x. Y ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 46 |
25 44 45
|
sylanbrc |
|- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X .x. Y ) e. U ) |