Step |
Hyp |
Ref |
Expression |
1 |
|
unitnegcl.1 |
|- U = ( Unit ` R ) |
2 |
|
unitnegcl.2 |
|- N = ( invg ` R ) |
3 |
|
simpl |
|- ( ( R e. Ring /\ X e. U ) -> R e. Ring ) |
4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
5 1
|
unitcl |
|- ( X e. U -> X e. ( Base ` R ) ) |
7 |
5 2
|
grpinvcl |
|- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` X ) e. ( Base ` R ) ) |
8 |
4 6 7
|
syl2an |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. ( Base ` R ) ) |
9 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
10 |
5 9 2
|
dvdsrneg |
|- ( ( R e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
11 |
8 10
|
syldan |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
12 |
5 2
|
grpinvinv |
|- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` ( N ` X ) ) = X ) |
13 |
4 6 12
|
syl2an |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` ( N ` X ) ) = X ) |
14 |
11 13
|
breqtrd |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) X ) |
15 |
|
simpr |
|- ( ( R e. Ring /\ X e. U ) -> X e. U ) |
16 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
17 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
18 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
19 |
1 16 9 17 18
|
isunit |
|- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
20 |
15 19
|
sylib |
|- ( ( R e. Ring /\ X e. U ) -> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
21 |
20
|
simpld |
|- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` R ) ( 1r ` R ) ) |
22 |
5 9
|
dvdsrtr |
|- ( ( R e. Ring /\ ( N ` X ) ( ||r ` R ) X /\ X ( ||r ` R ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
23 |
3 14 21 22
|
syl3anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
24 |
17
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
25 |
24
|
adantr |
|- ( ( R e. Ring /\ X e. U ) -> ( oppR ` R ) e. Ring ) |
26 |
17 5
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
27 |
17 2
|
opprneg |
|- N = ( invg ` ( oppR ` R ) ) |
28 |
26 18 27
|
dvdsrneg |
|- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
29 |
25 8 28
|
syl2anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
30 |
29 13
|
breqtrd |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) X ) |
31 |
20
|
simprd |
|- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
32 |
26 18
|
dvdsrtr |
|- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) X /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
33 |
25 30 31 32
|
syl3anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
34 |
1 16 9 17 18
|
isunit |
|- ( ( N ` X ) e. U <-> ( ( N ` X ) ( ||r ` R ) ( 1r ` R ) /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
35 |
23 33 34
|
sylanbrc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. U ) |