| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitnegcl.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unitnegcl.2 |
|- N = ( invg ` R ) |
| 3 |
|
simpl |
|- ( ( R e. Ring /\ X e. U ) -> R e. Ring ) |
| 4 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
5 1
|
unitcl |
|- ( X e. U -> X e. ( Base ` R ) ) |
| 7 |
5 2
|
grpinvcl |
|- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` X ) e. ( Base ` R ) ) |
| 8 |
4 6 7
|
syl2an |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. ( Base ` R ) ) |
| 9 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 10 |
5 9 2
|
dvdsrneg |
|- ( ( R e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
| 11 |
8 10
|
syldan |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( N ` ( N ` X ) ) ) |
| 12 |
5 2
|
grpinvinv |
|- ( ( R e. Grp /\ X e. ( Base ` R ) ) -> ( N ` ( N ` X ) ) = X ) |
| 13 |
4 6 12
|
syl2an |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` ( N ` X ) ) = X ) |
| 14 |
11 13
|
breqtrd |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) X ) |
| 15 |
|
simpr |
|- ( ( R e. Ring /\ X e. U ) -> X e. U ) |
| 16 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 17 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 18 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
| 19 |
1 16 9 17 18
|
isunit |
|- ( X e. U <-> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 20 |
15 19
|
sylib |
|- ( ( R e. Ring /\ X e. U ) -> ( X ( ||r ` R ) ( 1r ` R ) /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 21 |
20
|
simpld |
|- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` R ) ( 1r ` R ) ) |
| 22 |
5 9
|
dvdsrtr |
|- ( ( R e. Ring /\ ( N ` X ) ( ||r ` R ) X /\ X ( ||r ` R ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
| 23 |
3 14 21 22
|
syl3anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` R ) ( 1r ` R ) ) |
| 24 |
17
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 25 |
24
|
adantr |
|- ( ( R e. Ring /\ X e. U ) -> ( oppR ` R ) e. Ring ) |
| 26 |
17 5
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 27 |
17 2
|
opprneg |
|- N = ( invg ` ( oppR ` R ) ) |
| 28 |
26 18 27
|
dvdsrneg |
|- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) e. ( Base ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
| 29 |
25 8 28
|
syl2anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( N ` ( N ` X ) ) ) |
| 30 |
29 13
|
breqtrd |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) X ) |
| 31 |
20
|
simprd |
|- ( ( R e. Ring /\ X e. U ) -> X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 32 |
26 18
|
dvdsrtr |
|- ( ( ( oppR ` R ) e. Ring /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) X /\ X ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 33 |
25 30 31 32
|
syl3anc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) |
| 34 |
1 16 9 17 18
|
isunit |
|- ( ( N ` X ) e. U <-> ( ( N ` X ) ( ||r ` R ) ( 1r ` R ) /\ ( N ` X ) ( ||r ` ( oppR ` R ) ) ( 1r ` R ) ) ) |
| 35 |
23 33 34
|
sylanbrc |
|- ( ( R e. Ring /\ X e. U ) -> ( N ` X ) e. U ) |