Step |
Hyp |
Ref |
Expression |
1 |
|
unitnz.1 |
|- U = ( Unit ` R ) |
2 |
|
unitnz.2 |
|- .0. = ( 0g ` R ) |
3 |
|
unitnz.3 |
|- ( ph -> R e. NzRing ) |
4 |
|
unitnz.4 |
|- ( ph -> X e. U ) |
5 |
|
nzrring |
|- ( R e. NzRing -> R e. Ring ) |
6 |
3 5
|
syl |
|- ( ph -> R e. Ring ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
7 2
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
9 |
3 8
|
syl |
|- ( ph -> ( 1r ` R ) =/= .0. ) |
10 |
1 2 7
|
0unit |
|- ( R e. Ring -> ( .0. e. U <-> ( 1r ` R ) = .0. ) ) |
11 |
10
|
necon3bbid |
|- ( R e. Ring -> ( -. .0. e. U <-> ( 1r ` R ) =/= .0. ) ) |
12 |
11
|
biimpar |
|- ( ( R e. Ring /\ ( 1r ` R ) =/= .0. ) -> -. .0. e. U ) |
13 |
6 9 12
|
syl2anc |
|- ( ph -> -. .0. e. U ) |
14 |
|
nelne2 |
|- ( ( X e. U /\ -. .0. e. U ) -> X =/= .0. ) |
15 |
4 13 14
|
syl2anc |
|- ( ph -> X =/= .0. ) |