Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
rngidpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
rngidpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
4 |
1 2 3
|
rngidpropd |
|- ( ph -> ( 1r ` K ) = ( 1r ` L ) ) |
5 |
4
|
breq2d |
|- ( ph -> ( z ( ||r ` K ) ( 1r ` K ) <-> z ( ||r ` K ) ( 1r ` L ) ) ) |
6 |
4
|
breq2d |
|- ( ph -> ( z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) <-> z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) ) |
7 |
5 6
|
anbi12d |
|- ( ph -> ( ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) <-> ( z ( ||r ` K ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) ) ) |
8 |
1 2 3
|
dvdsrpropd |
|- ( ph -> ( ||r ` K ) = ( ||r ` L ) ) |
9 |
8
|
breqd |
|- ( ph -> ( z ( ||r ` K ) ( 1r ` L ) <-> z ( ||r ` L ) ( 1r ` L ) ) ) |
10 |
|
eqid |
|- ( oppR ` K ) = ( oppR ` K ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
10 11
|
opprbas |
|- ( Base ` K ) = ( Base ` ( oppR ` K ) ) |
13 |
1 12
|
eqtrdi |
|- ( ph -> B = ( Base ` ( oppR ` K ) ) ) |
14 |
|
eqid |
|- ( oppR ` L ) = ( oppR ` L ) |
15 |
|
eqid |
|- ( Base ` L ) = ( Base ` L ) |
16 |
14 15
|
opprbas |
|- ( Base ` L ) = ( Base ` ( oppR ` L ) ) |
17 |
2 16
|
eqtrdi |
|- ( ph -> B = ( Base ` ( oppR ` L ) ) ) |
18 |
3
|
ancom2s |
|- ( ( ph /\ ( y e. B /\ x e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
19 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
20 |
|
eqid |
|- ( .r ` ( oppR ` K ) ) = ( .r ` ( oppR ` K ) ) |
21 |
11 19 10 20
|
opprmul |
|- ( y ( .r ` ( oppR ` K ) ) x ) = ( x ( .r ` K ) y ) |
22 |
|
eqid |
|- ( .r ` L ) = ( .r ` L ) |
23 |
|
eqid |
|- ( .r ` ( oppR ` L ) ) = ( .r ` ( oppR ` L ) ) |
24 |
15 22 14 23
|
opprmul |
|- ( y ( .r ` ( oppR ` L ) ) x ) = ( x ( .r ` L ) y ) |
25 |
18 21 24
|
3eqtr4g |
|- ( ( ph /\ ( y e. B /\ x e. B ) ) -> ( y ( .r ` ( oppR ` K ) ) x ) = ( y ( .r ` ( oppR ` L ) ) x ) ) |
26 |
13 17 25
|
dvdsrpropd |
|- ( ph -> ( ||r ` ( oppR ` K ) ) = ( ||r ` ( oppR ` L ) ) ) |
27 |
26
|
breqd |
|- ( ph -> ( z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) <-> z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) |
28 |
9 27
|
anbi12d |
|- ( ph -> ( ( z ( ||r ` K ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` L ) ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) ) |
29 |
7 28
|
bitrd |
|- ( ph -> ( ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) ) |
30 |
|
eqid |
|- ( Unit ` K ) = ( Unit ` K ) |
31 |
|
eqid |
|- ( 1r ` K ) = ( 1r ` K ) |
32 |
|
eqid |
|- ( ||r ` K ) = ( ||r ` K ) |
33 |
|
eqid |
|- ( ||r ` ( oppR ` K ) ) = ( ||r ` ( oppR ` K ) ) |
34 |
30 31 32 10 33
|
isunit |
|- ( z e. ( Unit ` K ) <-> ( z ( ||r ` K ) ( 1r ` K ) /\ z ( ||r ` ( oppR ` K ) ) ( 1r ` K ) ) ) |
35 |
|
eqid |
|- ( Unit ` L ) = ( Unit ` L ) |
36 |
|
eqid |
|- ( 1r ` L ) = ( 1r ` L ) |
37 |
|
eqid |
|- ( ||r ` L ) = ( ||r ` L ) |
38 |
|
eqid |
|- ( ||r ` ( oppR ` L ) ) = ( ||r ` ( oppR ` L ) ) |
39 |
35 36 37 14 38
|
isunit |
|- ( z e. ( Unit ` L ) <-> ( z ( ||r ` L ) ( 1r ` L ) /\ z ( ||r ` ( oppR ` L ) ) ( 1r ` L ) ) ) |
40 |
29 34 39
|
3bitr4g |
|- ( ph -> ( z e. ( Unit ` K ) <-> z e. ( Unit ` L ) ) ) |
41 |
40
|
eqrdv |
|- ( ph -> ( Unit ` K ) = ( Unit ` L ) ) |