Metamath Proof Explorer


Theorem unitreslOLD

Description: Obsolete version of olcnd as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses olcnd.1
|- ( ph -> ( ps \/ ch ) )
olcnd.2
|- ( ph -> -. ch )
Assertion unitreslOLD
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 olcnd.1
 |-  ( ph -> ( ps \/ ch ) )
2 olcnd.2
 |-  ( ph -> -. ch )
3 orcom
 |-  ( ( ps \/ ch ) <-> ( ch \/ ps ) )
4 df-or
 |-  ( ( ch \/ ps ) <-> ( -. ch -> ps ) )
5 3 4 sylbb
 |-  ( ( ps \/ ch ) -> ( -. ch -> ps ) )
6 1 2 5 sylc
 |-  ( ph -> ps )