Step |
Hyp |
Ref |
Expression |
1 |
|
unitinvcl.1 |
|- U = ( Unit ` R ) |
2 |
|
unitinvcl.2 |
|- I = ( invr ` R ) |
3 |
|
unitinvcl.3 |
|- .x. = ( .r ` R ) |
4 |
|
unitinvcl.4 |
|- .1. = ( 1r ` R ) |
5 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
6 |
1 5
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
7 |
1 5
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
8 |
1
|
fvexi |
|- U e. _V |
9 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
10 |
9 3
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
11 |
5 10
|
ressplusg |
|- ( U e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
12 |
8 11
|
ax-mp |
|- .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
13 |
|
eqid |
|- ( 0g ` ( ( mulGrp ` R ) |`s U ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) |
14 |
1 5 2
|
invrfval |
|- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
15 |
7 12 13 14
|
grprinv |
|- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
16 |
6 15
|
sylan |
|- ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
17 |
1 5 4
|
unitgrpid |
|- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
18 |
17
|
adantr |
|- ( ( R e. Ring /\ X e. U ) -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
19 |
16 18
|
eqtr4d |
|- ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = .1. ) |