| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unitinvcl.1 | 
							 |-  U = ( Unit ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							unitinvcl.2 | 
							 |-  I = ( invr ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							unitinvcl.3 | 
							 |-  .x. = ( .r ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							unitinvcl.4 | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							unitgrp | 
							 |-  ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp )  | 
						
						
							| 7 | 
							
								1 5
							 | 
							unitgrpbas | 
							 |-  U = ( Base ` ( ( mulGrp ` R ) |`s U ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							fvexi | 
							 |-  U e. _V  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( mulGrp ` R ) = ( mulGrp ` R )  | 
						
						
							| 10 | 
							
								9 3
							 | 
							mgpplusg | 
							 |-  .x. = ( +g ` ( mulGrp ` R ) )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							ressplusg | 
							 |-  ( U e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							ax-mp | 
							 |-  .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` ( ( mulGrp ` R ) |`s U ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) )  | 
						
						
							| 14 | 
							
								1 5 2
							 | 
							invrfval | 
							 |-  I = ( invg ` ( ( mulGrp ` R ) |`s U ) )  | 
						
						
							| 15 | 
							
								7 12 13 14
							 | 
							grprinv | 
							 |-  ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) )  | 
						
						
							| 16 | 
							
								6 15
							 | 
							sylan | 
							 |-  ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) )  | 
						
						
							| 17 | 
							
								1 5 4
							 | 
							unitgrpid | 
							 |-  ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( R e. Ring /\ X e. U ) -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							eqtr4d | 
							 |-  ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = .1. )  |