Step |
Hyp |
Ref |
Expression |
1 |
|
unitrrg.e |
|- E = ( RLReg ` R ) |
2 |
|
unitrrg.u |
|- U = ( Unit ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 2
|
unitcl |
|- ( x e. U -> x e. ( Base ` R ) ) |
5 |
4
|
adantl |
|- ( ( R e. Ring /\ x e. U ) -> x e. ( Base ` R ) ) |
6 |
|
oveq2 |
|- ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) ) |
7 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
10 |
2 7 8 9
|
unitlinv |
|- ( ( R e. Ring /\ x e. U ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
11 |
10
|
adantr |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) = ( 1r ` R ) ) |
12 |
11
|
oveq1d |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( 1r ` R ) ( .r ` R ) y ) ) |
13 |
|
simpll |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> R e. Ring ) |
14 |
2 7 3
|
ringinvcl |
|- ( ( R e. Ring /\ x e. U ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) |
15 |
14
|
adantr |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( invr ` R ) ` x ) e. ( Base ` R ) ) |
16 |
5
|
adantr |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
17 |
|
simpr |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> y e. ( Base ` R ) ) |
18 |
3 8
|
ringass |
|- ( ( R e. Ring /\ ( ( ( invr ` R ) ` x ) e. ( Base ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) ) |
19 |
13 15 16 17 18
|
syl13anc |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) x ) ( .r ` R ) y ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) ) |
20 |
3 8 9
|
ringlidm |
|- ( ( R e. Ring /\ y e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = y ) |
21 |
20
|
adantlr |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) y ) = y ) |
22 |
12 19 21
|
3eqtr3d |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = y ) |
23 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
24 |
3 8 23
|
ringrz |
|- ( ( R e. Ring /\ ( ( invr ` R ) ` x ) e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
25 |
13 15 24
|
syl2anc |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
26 |
22 25
|
eqeq12d |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( ( ( invr ` R ) ` x ) ( .r ` R ) ( x ( .r ` R ) y ) ) = ( ( ( invr ` R ) ` x ) ( .r ` R ) ( 0g ` R ) ) <-> y = ( 0g ` R ) ) ) |
27 |
6 26
|
syl5ib |
|- ( ( ( R e. Ring /\ x e. U ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) |
28 |
27
|
ralrimiva |
|- ( ( R e. Ring /\ x e. U ) -> A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) |
29 |
1 3 8 23
|
isrrg |
|- ( x e. E <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = ( 0g ` R ) -> y = ( 0g ` R ) ) ) ) |
30 |
5 28 29
|
sylanbrc |
|- ( ( R e. Ring /\ x e. U ) -> x e. E ) |
31 |
30
|
ex |
|- ( R e. Ring -> ( x e. U -> x e. E ) ) |
32 |
31
|
ssrdv |
|- ( R e. Ring -> U C_ E ) |