Metamath Proof Explorer


Theorem unitss

Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses unitcl.1
|- B = ( Base ` R )
unitcl.2
|- U = ( Unit ` R )
Assertion unitss
|- U C_ B

Proof

Step Hyp Ref Expression
1 unitcl.1
 |-  B = ( Base ` R )
2 unitcl.2
 |-  U = ( Unit ` R )
3 1 2 unitcl
 |-  ( x e. U -> x e. B )
4 3 ssriv
 |-  U C_ B