Step |
Hyp |
Ref |
Expression |
1 |
|
unitsubm.1 |
|- U = ( Unit ` R ) |
2 |
|
unitsubm.2 |
|- M = ( mulGrp ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 1
|
unitss |
|- U C_ ( Base ` R ) |
5 |
4
|
a1i |
|- ( R e. Ring -> U C_ ( Base ` R ) ) |
6 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
7 |
1 6
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
8 |
2
|
oveq1i |
|- ( M |`s U ) = ( ( mulGrp ` R ) |`s U ) |
9 |
1 8
|
unitgrp |
|- ( R e. Ring -> ( M |`s U ) e. Grp ) |
10 |
9
|
grpmndd |
|- ( R e. Ring -> ( M |`s U ) e. Mnd ) |
11 |
2
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
12 |
2 3
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
13 |
2 6
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
14 |
|
eqid |
|- ( M |`s U ) = ( M |`s U ) |
15 |
12 13 14
|
issubm2 |
|- ( M e. Mnd -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) ) |
16 |
11 15
|
syl |
|- ( R e. Ring -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) ) |
17 |
5 7 10 16
|
mpbir3and |
|- ( R e. Ring -> U e. ( SubMnd ` M ) ) |