Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uniwun | |- U. WUni = _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqv | |- ( U. WUni = _V <-> A. x x e. U. WUni ) |
|
| 2 | vsnex | |- { x } e. _V |
|
| 3 | wunex | |- ( { x } e. _V -> E. u e. WUni { x } C_ u ) |
|
| 4 | 2 3 | ax-mp | |- E. u e. WUni { x } C_ u |
| 5 | eluni2 | |- ( x e. U. WUni <-> E. u e. WUni x e. u ) |
|
| 6 | vex | |- x e. _V |
|
| 7 | 6 | snss | |- ( x e. u <-> { x } C_ u ) |
| 8 | 7 | rexbii | |- ( E. u e. WUni x e. u <-> E. u e. WUni { x } C_ u ) |
| 9 | 5 8 | bitri | |- ( x e. U. WUni <-> E. u e. WUni { x } C_ u ) |
| 10 | 4 9 | mpbir | |- x e. U. WUni |
| 11 | 1 10 | mpgbir | |- U. WUni = _V |