Metamath Proof Explorer


Theorem uniwun

Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion uniwun
|- U. WUni = _V

Proof

Step Hyp Ref Expression
1 eqv
 |-  ( U. WUni = _V <-> A. x x e. U. WUni )
2 snex
 |-  { x } e. _V
3 wunex
 |-  ( { x } e. _V -> E. u e. WUni { x } C_ u )
4 2 3 ax-mp
 |-  E. u e. WUni { x } C_ u
5 eluni2
 |-  ( x e. U. WUni <-> E. u e. WUni x e. u )
6 vex
 |-  x e. _V
7 6 snss
 |-  ( x e. u <-> { x } C_ u )
8 7 rexbii
 |-  ( E. u e. WUni x e. u <-> E. u e. WUni { x } C_ u )
9 5 8 bitri
 |-  ( x e. U. WUni <-> E. u e. WUni { x } C_ u )
10 4 9 mpbir
 |-  x e. U. WUni
11 1 10 mpgbir
 |-  U. WUni = _V