Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | uniwun | |- U. WUni = _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv | |- ( U. WUni = _V <-> A. x x e. U. WUni ) |
|
2 | snex | |- { x } e. _V |
|
3 | wunex | |- ( { x } e. _V -> E. u e. WUni { x } C_ u ) |
|
4 | 2 3 | ax-mp | |- E. u e. WUni { x } C_ u |
5 | eluni2 | |- ( x e. U. WUni <-> E. u e. WUni x e. u ) |
|
6 | vex | |- x e. _V |
|
7 | 6 | snss | |- ( x e. u <-> { x } C_ u ) |
8 | 7 | rexbii | |- ( E. u e. WUni x e. u <-> E. u e. WUni { x } C_ u ) |
9 | 5 8 | bitri | |- ( x e. U. WUni <-> E. u e. WUni { x } C_ u ) |
10 | 4 9 | mpbir | |- x e. U. WUni |
11 | 1 10 | mpgbir | |- U. WUni = _V |