| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o |  |-  ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) | 
						
							| 2 |  | f1ocnvfv2 |  |-  ( ( T : ~H -1-1-onto-> ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( T e. UniOp /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( T ` ( `' T ` B ) ) = B ) | 
						
							| 5 | 4 | oveq2d |  |-  ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( ( T ` A ) .ih B ) ) | 
						
							| 6 |  | f1ocnv |  |-  ( T : ~H -1-1-onto-> ~H -> `' T : ~H -1-1-onto-> ~H ) | 
						
							| 7 |  | f1of |  |-  ( `' T : ~H -1-1-onto-> ~H -> `' T : ~H --> ~H ) | 
						
							| 8 | 1 6 7 | 3syl |  |-  ( T e. UniOp -> `' T : ~H --> ~H ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( T e. UniOp /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( `' T ` B ) e. ~H ) | 
						
							| 11 |  | unop |  |-  ( ( T e. UniOp /\ A e. ~H /\ ( `' T ` B ) e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) | 
						
							| 12 | 10 11 | syld3an3 |  |-  ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih ( T ` ( `' T ` B ) ) ) = ( A .ih ( `' T ` B ) ) ) | 
						
							| 13 | 5 12 | eqtr3d |  |-  ( ( T e. UniOp /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( `' T ` B ) ) ) |