| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unoplin | 
							 |-  ( T e. UniOp -> T e. LinOp )  | 
						
						
							| 2 | 
							
								
							 | 
							unopf1o | 
							 |-  ( T e. UniOp -> T : ~H -1-1-onto-> ~H )  | 
						
						
							| 3 | 
							
								
							 | 
							f1of | 
							 |-  ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							syl | 
							 |-  ( T e. UniOp -> T : ~H --> ~H )  | 
						
						
							| 5 | 
							
								
							 | 
							nmop0h | 
							 |-  ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) = 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeltrdi | 
							 |-  ( ( ~H = 0H /\ T : ~H --> ~H ) -> ( normop ` T ) e. RR )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylan2 | 
							 |-  ( ( ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ne | 
							 |-  ( ~H =/= 0H <-> -. ~H = 0H )  | 
						
						
							| 10 | 
							
								
							 | 
							nmopun | 
							 |-  ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) = 1 )  | 
						
						
							| 11 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeltrdi | 
							 |-  ( ( ~H =/= 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							sylanbr | 
							 |-  ( ( -. ~H = 0H /\ T e. UniOp ) -> ( normop ` T ) e. RR )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							pm2.61ian | 
							 |-  ( T e. UniOp -> ( normop ` T ) e. RR )  | 
						
						
							| 15 | 
							
								
							 | 
							elbdop2 | 
							 |-  ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) )  | 
						
						
							| 16 | 
							
								1 14 15
							 | 
							sylanbrc | 
							 |-  ( T e. UniOp -> T e. BndLinOp )  |