Step |
Hyp |
Ref |
Expression |
1 |
|
unopf1o |
|- ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) |
2 |
|
f1of |
|- ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H ) |
3 |
1 2
|
syl |
|- ( T e. UniOp -> T : ~H --> ~H ) |
4 |
3
|
ffvelrnda |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
5 |
|
normcl |
|- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
6 |
4 5
|
syl |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) e. RR ) |
7 |
|
normcl |
|- ( A e. ~H -> ( normh ` A ) e. RR ) |
8 |
7
|
adantl |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` A ) e. RR ) |
9 |
|
normge0 |
|- ( ( T ` A ) e. ~H -> 0 <_ ( normh ` ( T ` A ) ) ) |
10 |
4 9
|
syl |
|- ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` ( T ` A ) ) ) |
11 |
|
normge0 |
|- ( A e. ~H -> 0 <_ ( normh ` A ) ) |
12 |
11
|
adantl |
|- ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` A ) ) |
13 |
|
unop |
|- ( ( T e. UniOp /\ A e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) |
14 |
13
|
3anidm23 |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) |
15 |
|
normsq |
|- ( ( T ` A ) e. ~H -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) |
16 |
4 15
|
syl |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) |
17 |
|
normsq |
|- ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |
18 |
17
|
adantl |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) |
19 |
14 16 18
|
3eqtr4d |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) |
20 |
6 8 10 12 19
|
sq11d |
|- ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) = ( normh ` A ) ) |