| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unopf1o |  |-  ( T e. UniOp -> T : ~H -1-1-onto-> ~H ) | 
						
							| 2 |  | f1of |  |-  ( T : ~H -1-1-onto-> ~H -> T : ~H --> ~H ) | 
						
							| 3 | 1 2 | syl |  |-  ( T e. UniOp -> T : ~H --> ~H ) | 
						
							| 4 | 3 | ffvelcdmda |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( T ` A ) e. ~H ) | 
						
							| 5 |  | normcl |  |-  ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) e. RR ) | 
						
							| 7 |  | normcl |  |-  ( A e. ~H -> ( normh ` A ) e. RR ) | 
						
							| 8 | 7 | adantl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` A ) e. RR ) | 
						
							| 9 |  | normge0 |  |-  ( ( T ` A ) e. ~H -> 0 <_ ( normh ` ( T ` A ) ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` ( T ` A ) ) ) | 
						
							| 11 |  | normge0 |  |-  ( A e. ~H -> 0 <_ ( normh ` A ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> 0 <_ ( normh ` A ) ) | 
						
							| 13 |  | unop |  |-  ( ( T e. UniOp /\ A e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) | 
						
							| 14 | 13 | 3anidm23 |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( ( T ` A ) .ih ( T ` A ) ) = ( A .ih A ) ) | 
						
							| 15 |  | normsq |  |-  ( ( T ` A ) e. ~H -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) | 
						
							| 16 | 4 15 | syl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( T ` A ) .ih ( T ` A ) ) ) | 
						
							| 17 |  | normsq |  |-  ( A e. ~H -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` A ) ^ 2 ) = ( A .ih A ) ) | 
						
							| 19 | 14 16 18 | 3eqtr4d |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( ( normh ` ( T ` A ) ) ^ 2 ) = ( ( normh ` A ) ^ 2 ) ) | 
						
							| 20 | 6 8 10 12 19 | sq11d |  |-  ( ( T e. UniOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) = ( normh ` A ) ) |