| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfn |  |-  ( Fun F <-> F Fn dom F ) | 
						
							| 2 |  | elpreima |  |-  ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) ) ) | 
						
							| 3 |  | elun |  |-  ( ( F ` x ) e. ( A u. B ) <-> ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) | 
						
							| 4 | 3 | anbi2i |  |-  ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) ) | 
						
							| 5 |  | andi |  |-  ( ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) | 
						
							| 6 | 4 5 | bitri |  |-  ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) | 
						
							| 7 |  | elun |  |-  ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) ) | 
						
							| 8 |  | elpreima |  |-  ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) | 
						
							| 9 |  | elpreima |  |-  ( F Fn dom F -> ( x e. ( `' F " B ) <-> ( x e. dom F /\ ( F ` x ) e. B ) ) ) | 
						
							| 10 | 8 9 | orbi12d |  |-  ( F Fn dom F -> ( ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) | 
						
							| 11 | 7 10 | bitrid |  |-  ( F Fn dom F -> ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) | 
						
							| 12 | 6 11 | bitr4id |  |-  ( F Fn dom F -> ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) | 
						
							| 13 | 2 12 | bitrd |  |-  ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) | 
						
							| 14 | 13 | eqrdv |  |-  ( F Fn dom F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) | 
						
							| 15 | 1 14 | sylbi |  |-  ( Fun F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |